Technical and clinical evaluation of a new polyamide hollow fiber hemofilter for CAVH

1988 ◽  
Vol 11 (1) ◽  
pp. 33-38 ◽  
Author(s):  
C. Ronco ◽  
A. Brendolan ◽  
L. Bragantini ◽  
A. Fabris ◽  
M. Feriani ◽  
...  

We carried out an in-vivo and in-vitro evaluation of a new polyamide hollow fiber hemofilter especially designed to operate under conditions of low pressure and low blood flow, such as in continuous arteriovenous hemofiltration (CAVH). The results obtained suggest that this filter is a prototype of a new generation of hemofilters especially designed for CAVH. Its low resistance permits its use even in patients with severe hypotension. The high blood flows achieved at a given pressure reduce the risk of clotting and increase the ultrafiltration rate. When an average ultrafiltration of 20-25 ml/min is achieved in 24 hours CAVH becomes very efficient, and alternative techniques to increase its efficiency are no longer required.

2003 ◽  
Vol 26 (2) ◽  
pp. 105-112 ◽  
Author(s):  
F. Gastaldon ◽  
A. Brendolan ◽  
C. Crepaldi ◽  
P. Frisone ◽  
S. Zamboni ◽  
...  

The main target for low flux hemodialyzers is an efficient low molecular weight solutes clearance. Such efficiency is largely dependent on the optimization of diffusion between blood and dialysis solution. The diffusion process can be impaired if there is a mismatch between blood and dialysate flow distribution in the dialyzer. Thus optimized flow distribution both in the blood and dialysate compartment becomes quintessential for the maximal efficiency of the diffusion process within the hemodialyzer. The present paper describes the distribution of the blood and dialysate flows in a new low flux polysulfone hollow fiber hemodialyzer characterized by a specific undulation of the fibers and a new cutting technology of the fibers for an improved micro-flow condition in the blood compartment headers. Twelve Diacap α Polysulfone LO PS 15 (1.5 sqm) (B.Braun Medizintechnologie, Melsungen Germany) were employed for the study. Six were analyzed in vitro and six were studied in vivo. Blood flow distribution was studied in vitro by dye injection in the blood compartment during experimental extracorporeal circulation utilizing human blood with hematocrit adjusted at 33%. Sequential images were obtained with a helical scanner in a fixed longitudinal section of the dialyzer 1 cm thick. Average and regional blood flow velocities were measured utilizing the reconstructed imaging sequence. The method allowed the calculation of single fiber blood flow (SF Qb) and the mass transfer zone (MTR) definition in digitally subtracted images. The patterns 20–10 and 40–30 were utilized. The same technology was used to evaluate flow distribution in the dialysate compartment after dye injection in the Hansen's connector. Regional dialysate flow was calculated in central and peripheral sample areas of 1 cm2. Six in vivo hemodialysis treatments on patients with end stage renal disease were performed at three different blood flow rates (250–350 and 450 ml/min) in order to measure urea, creatinine and phosphate clearance. Macroscopic and densitometrical analysis revealed that flow distribution was homogeneous in the blood compartment while in the dialysate compartment a slight difference between the peripheral and central regions in terms of flow velocity was observed. This however was not generating channeling phenomena. Urea creatinine and phosphate clearances were remarkably high and so were the Kt/V observed in all sessions, especially in relation to the studied blood flows. In conclusion, a significant blood to dialysate flow match with optimized countercurrent flow condition was observed in the studied hollow fiber hemodialyzers. Such optimization might be due both to the improved dialyzer design at the level of the blood header and to the specific fiber undulation that prevents dialysate channeling.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yedan Liu ◽  
Shaoxun Wang ◽  
Ya Guo ◽  
Huawei Zhang ◽  
Richard Roman ◽  
...  

Diabetes is the primary pathological factor attributed to Alzheimer’s disease and vascular cognitive impairment. Previous studies demonstrated that hyperglycemia promoted oxidative stress in the cerebral vasculature. Cerebrovascular pericytes contribute to maintaining blood-brain barrier (BBB) integrity and regulating cerebral blood flow (CBF). However, whether hyperglycemia diminishes the contractile capability of pericytes, impairs CBF autoregulation and increases BBB permeability are unclear. In the present study, we examined the role of pericytes in cerebrovascular function and cognition in diabetes using cell culture in vitro , isolated penetrating arterioles ex vivo and CBF autoregulation in vivo . Reactive oxygen species were elevated in high glucose (HG, 30 mM) treated vs. normal glucose (NG, 5.5 mM) treated pericytes. Further, mitochondrial superoxide production was increased in HG-treated vs. NG-treated group (13.24 ± 1.01 arbitrary unit (a.u.)/30min vs. 6.98 ± 0.36 a.u./30min). Mitochondrial respiration decreased in HG-treated vs. NG-treated pericytes (3718 ± 185.9 pmol/min/mg, n=10 vs. 4742 ± 284.5 pmol/min/mg, n=10) as measured by a Seahorse XFe24 analyzer. HG-treated pericytes displayed fragmented mitochondria in association with increased fission protein (DRP1) and decreased fusion protein (OPA1) expression. HG-treated pericytes displayed lower contractile capability than NG-treated cells (20.23 ± 7.15% vs. 29.46 ± 9.41%). The myogenic response was impaired in penetrating arterioles isolated from diabetic rats in comparison with non-diabetic rats. Autoregulation of CBF measured by a laser Doppler flowmeter was impaired in diabetic rats compared with non-diabetic rats. Diabetic rats exhibited greater BBB leakage than control rats. The cognitive function was examined using an eight-arm water maze. Diabetic rats took longer time to escape than the non-diabetic rats indicating learning and memory deficits. In conclusion, hyperglycemia induces pericyte dysfunction by altering mitochondrial dynamics and diminishing contractile capability, which promotes BBB leakage, decreases CBF autoregulation and contributes to diabetes-related dementia.


2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


1986 ◽  
Vol 251 (5) ◽  
pp. R851-R858
Author(s):  
S. J. Wickler ◽  
B. A. Horwitz ◽  
J. S. Stern

The Zucker obese rat is characterized by decreased capacity for diet-induced and for nonshivering thermogenesis. This decrease is due, in large part, to reduced thermogenesis in depots of brown adipose tissue, a major source of heat production in rats. Adrenalectomy retards the weight gain observed in the obese rats and also normalizes brown fat guanosine 5'-diphosphate (GDP) binding, an in vitro measure of brown fat thermogenic capacity. This study examined the effect of adrenalectomy on brown fat blood flow, an in vivo measure of the tissue's function, and on norepinephrine-induced O2 consumption (NST) of 11-wk-old obese (fa/fa) and lean (Fa/?) rats. Adrenalectomy had little effect on weight gain, NST, or norepinephrine-stimulated blood flow to brown fat in lean rats. However, adrenalectomy produced profound changes in the obese animals, preventing the weight gain normally occurring in the obese rats and normalizing both NST capacity and norepinephrine-stimulated blood flow to brown fat. These findings provide further support for the importance of brown fat thermogenesis and glucocorticoids in modulating the obesity of the Zucker rat.


2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


1998 ◽  
Vol 39 (4) ◽  
pp. 372-374 ◽  
Author(s):  
K. J. Berg ◽  
B. Rolfsen ◽  
G. Stake

Purpose, Material and Methods, and Results: The dialyzability of the high-molecular X-ray contrast medium iodixanol was examined in an in vitro hemo-dialysis model using two different hollow fiber membranes: one high-flux (polysulfone) membrane and one intermediate-flux (cellulose triacetate) membrane. Blood flow was 200 ml/min and membrane area 1.3 m2. The dialyzer clearance of iodixanol dissolved in a mixture of leukocyte-filtered SAG-M blood and compatible citrate plasma was 134.2±3.6 ml/min for the polysulfone membrane and 113.0±3.6 ml/min for the cellulose triacetate membrane. Conclusion: Iodixanol is readily dialyzed through commercial high-flux membranes.


2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


2006 ◽  
Vol 91 (9) ◽  
pp. 3633-3638 ◽  
Author(s):  
M. Hickey ◽  
G. Krikun ◽  
P. Kodaman ◽  
Frederick Schatz ◽  
C. Carati ◽  
...  

Abstract Context: Because of their safety and efficacy, long-term progestin-only contraceptives (LTPOCs) are well-suited for women with restricted access to health care. However, abnormal uterine bleeding (AUB) causes half of all users to discontinue therapy within 12 months. Endometria of LTPOC-treated patients display aberrant angiogenesis with abnormally enlarged, thin-walled, fragile blood vessels, inflammation, and focal hemorrhage. In this study, similar effects were observed with a new third-generation implantable LTPOC. Objective: We hypothesized that LTPOC reduces uterine and endometrial blood flow, leading to hypoxia/reperfusion, which triggers the generation of reactive oxygen species. The latter induce aberrant angiogenesis, causing AUB. Design: Endometrial perfusion was measured by laser-Doppler fluxmetry in women requesting LTPOCs. Endometrial biopsies were obtained for in vivo and in vitro experiments. Setting: The study was conducted in the Yale University School of Medicine and Family-Planning Center in Western Australia. Patients: Seven women 18 yr or older requesting implantable LTPOCs were recruited in Western Australia. Intervention: Women received etonorgestrel implants. Main Outcome: LTPOC treatment resulted in reduced endometrial perfusion and increased endometrial oxidative damage. Conclusions: We propose that LTPOCs result in hypoxia reperfusion, which leads to aberrant angiogenesis resulting in AUB.


Sign in / Sign up

Export Citation Format

Share Document