Effect of β-tricalcium phosphate coated with zoledronic acid on human osteoblasts and human osteoclasts in vitro

2011 ◽  
Vol 27 (5) ◽  
pp. 577-585 ◽  
Author(s):  
A Kadow-Romacker ◽  
S Greiner ◽  
G Schmidmaier ◽  
B Wildemann
2017 ◽  
Vol 34 ◽  
pp. 291-306 ◽  
Author(s):  
G Russmueller ◽  
◽  
L Winkler ◽  
R Lieber ◽  
R Seemann ◽  
...  

2021 ◽  
Vol 56 (2) ◽  
pp. 109-116
Author(s):  
Radoslav Omelka ◽  
Veronika Kovacova ◽  
Vladimira Mondockova ◽  
Birgit Grosskopf ◽  
Adriana Kolesarova ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


Author(s):  
Junjian Che ◽  
Hubiao Wang ◽  
Yunhai Ma ◽  
Feipeng Cao ◽  
Guoqin Liu ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 252
Author(s):  
Henni Setia Ningsih ◽  
Leonhard Tannesia ◽  
Hsiang-Ho Chen ◽  
Shao-Ju Shih

Mesoporous beta tricalcium phosphate (β-TCP) has recently attracted significant interest as an artificial bone tissue in orthopedics. However, a scalable process is required to meet future demands. Spray drying is one of the potential synthesis methods owing to its low cost and scalable production. In this study, various mesoporous β-TCP powders were calcined in the range of 800 to 1100 °C, with particle sizes ranging from ~0.3 to ~1.8 μm, specific surface areas from ~16 to ~64 m2/g, and average pore sizes of 3 nm. Except for the 800 °C calcined powder, the other β-TCP powders (calcination temperatures of 900, 1000, and 1100 °C) exhibited no cytotoxicity. These results indicate that spray-dried mesoporous β-TCP powders were obtained. Finally, the corresponding formation mechanisms are discussed.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100872
Author(s):  
Morten Steen Svarer Hansen ◽  
Kent Søe ◽  
Caroline Gorvin ◽  
Morten Frost

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2739 ◽  
Author(s):  
Korbinian Benz ◽  
Andreas Schöbel ◽  
Marisa Dietz ◽  
Peter Maurer ◽  
Jochen Jackowski

The aim of this in vitro pilot study was to analyse the adhesion behaviour of human osteoblasts and fibroblasts on polyether ether ketone (PEEK) when compared with titanium surfaces in an inflammatory environment under lipopolysaccharide (LPS) incubation. Scanning electron microscopy (SEM) images of primary human osteoblasts/fibroblasts on titanium/PEEK samples were created. The gene expression of the LPS-binding protein (LBP) and the LPS receptor (toll-like receptor 4; TLR4) was measured by real-time polymerase chain reaction (PCR). Immunocytochemistry was used to obtain evidence for the distribution of LBP/TLR4 at the protein level of the extra-cellular-matrix-binding protein vinculin and the actin cytoskeleton. SEM images revealed that the osteoblasts and fibroblasts on the PEEK surfaces had adhesion characteristics comparable to those of titanium. The osteoblasts contracted under LPS incubation and a significantly increased LBP gene expression were detected. This was discernible at the protein level on all the materials. Whereas no increase of TLR4 was detected with regard to mRNA concentrations, a considerable increase in the antibody reaction was detected on all the materials. As is the case with titanium, the colonisation of human osteoblasts and fibroblasts on PEEK samples is possible under pro-inflammatory environmental conditions and the cellular inflammation behaviour towards PEEK is lower than that of titanium.


Injury ◽  
2006 ◽  
Vol 37 (3) ◽  
pp. S33-S42 ◽  
Author(s):  
Lucy DiSilvio ◽  
Jacqueline Jameson ◽  
Zakareya Gamie ◽  
Peter V. Giannoudis ◽  
Eleftherios Tsiridis

Sign in / Sign up

Export Citation Format

Share Document