The Ratio of Extracellular Fluid to Total Body Water and Technique Survival in Peritoneal Dialysis Patients

2004 ◽  
Vol 24 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Colin H. Jones ◽  
Charles G. Newstead

Background Patients receiving peritoneal dialysis experience a high technique failure rate and are often overhydrated. We examined whether an increased extracellular fluid volume (VECF) as a proportion of the total body water (VTBW) predicted technique survival (TS) in a prevalent patient cohort. Methods The VECF and VTBW were estimated by multiple-frequency bioelectric impedance in 59 prevalent peritoneal dialysis patients (median time on dialysis 14 months). Demographic, biochemical (albumin, C-reactive protein, and ferritin), and anthropometric data, forearm muscle strength, nutritional score by three-point Subjective Global Assessment, residual renal function, dialysate-to-plasma (D/P) creatinine ratio, total weekly Kt/V urea, total creatinine clearance, normalized protein equivalent of nitrogen appearance, and midarm muscle circumference were also assessed. Technique survival was determined at 3 years, and significant predictors of TS were sought. Results In patient groups defined by falling above or below the median value for each parameter, only residual renal function ( p = 0.002), 24-hour ultrafiltrate volume ( p = 0.02), and VECF / VTBW ratio ( p = 0.05) were significant predictors of TS. Subjects with a higher than median VECF / VTBW ratio had a 3-year TS of 46%, compared to 78% in subjects with a lower than median value. In multivariate analysis, systolic blood pressure and VECF / VTBW ratio (both p < 0.05) were significant predictors of TS. C-reactive protein approached significance. Conclusion Increased ratio of extracellular fluid volume to total body water is associated with decreased TS in peritoneal dialysis.

1999 ◽  
Vol 56 (6) ◽  
pp. 2297-2303 ◽  
Author(s):  
Naomi V. Dahl ◽  
Edward F. Foote ◽  
Toros Kapoian ◽  
Caroline A. Steward ◽  
Richard A. Sherman

1997 ◽  
Vol 8 (12) ◽  
pp. 1906-1914 ◽  
Author(s):  
W Arkouche ◽  
D Fouque ◽  
C Pachiaudi ◽  
S Normand ◽  
M Laville ◽  
...  

In this investigation, total body water (TBW) in ten chronic peritoneal dialysis patients was studied by deuterium (TBW-2H), skinfold thickness (TBW-ST), Watson formula (TBW-WA), 58% of body weight (TBW-58%), and bioelectrical impedance (TBW-BIA), and these results were compared with the reference oxygen18 (TBW-18O) method. We also analyzed the fat-free mass (FFM) by skinfold thickness (FFM-ST), bioelectrical impedance (FFM-BIA), oxygen18 (FFM-18O), and creatinine kinetics method (FFM-CK). In addition, resting metabolic rate was measured by indirect calorimetry. Compared with TBW-18O, TBW-58% and TBW-BIA were significantly different (P < 0.01). TBW-2H overestimated TBW-18O by 4.3%. TBW-ST and TBW-WA gave slightly greater values than TBW-18O, although these values were nonstatistically significant. The best prediction of total body water from these methods was obtained with the Watson formula. When Kt/V was calculated from these results, the values obtained were statistically greater (BIA, P < 0.001) and smaller (58% BW, P < 0.01) than those obtained with either 18O or Watson formula. The fat-free mass estimation also led to discrepant findings. Indeed, FFM-CK was significantly lower (P < 0.05) as compared with FFM-ST, FFM-BIA, or FFM-18O. Resting metabolic rate was strongly correlated with FFM estimated by skinfold thickness (r = 0.91, P < 0.001), bioelectrical impedance (r = 0.85, P < 0.005), and 18O (r = 0.77, P < 0.01), but not when fat-free mass was estimated by the creatinine kinetic method. The water content of fat-free mass estimated by skinfold thickness was found to be 69.7 +/- 6.9% in these patients, a value lower than the standard 73.2% found in healthy adults. This study confirms that there is an abnormal water distribution in chronic peritoneal dialysis patients. However, when compared with the oxygen18 reference method, the Watson formula allows a reliable estimation of Kt/V.


2004 ◽  
Vol 1 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Michael I Lindinger ◽  
Gloria McKeen ◽  
Gayle L Ecker

AbstractThe purpose of the present study was to determine the time course and magnitude of changes in extracellular and intracellular fluid volumes in relation to changes in total body water during prolonged submaximal exercise and recovery in horses. Seven horses were physically conditioned over a 2-month period and trained to trot on a treadmill. Total body water (TBW), extracellular fluid volume (ECFV) and plasma volume (PV) were measured at rest using indicator dilution techniques (D2O, thiocyanate and Evans Blue, respectively). Changes in TBW were assessed from measures of body mass, and changes in PV and ECFV were calculated from changes in plasma protein concentration. Horses exercised by trotting on a treadmill for 75–120 min incurred a 4.2% decrease in TBW. During exercise, the entire decrease in TBW (mean±standard error: 12.8±2.0 l at end of exercise) could be attributed to the decrease in ECFV (12.0±2.4 l at end of exercise), such that there was no change in intracellular fluid volume (ICFV; 0.9±2.4 l at end of exercise). PV decreased from 22.0±0.5 l at rest to 19.8±0.3 l at end of exercise and remained depressed (18–19 l) during the first 2 h of recovery. Recovery of fluid volumes after exercise was slow, and characterized by a further transient loss of ECFV (first 30 min of recovery) and a sustained increase in ICFV (between 0.5 and 3.5 h of recovery). Recovery of fluid volumes was complete by 13 h post exercise. It is concluded that prolonged submaximal exercise in horses favours net loss of fluid from the extracellular fluid compartment.


1992 ◽  
Vol 27 (8) ◽  
pp. 1003-1008 ◽  
Author(s):  
Harry L. Anderson ◽  
Arnold G. Coran ◽  
Robert A. Drongowski ◽  
Hyun J. Ha ◽  
Robert H. Bartlett

Sign in / Sign up

Export Citation Format

Share Document