Experimental and numerical investigations of aerodynamic behavior of a three-stage high-pressure turbine at different operation conditions

Author(s):  
S Abdelfattah ◽  
M T Schobeiri

Using the Reynolds-averaged Navier–Stokes-based numerical methods to simulate the flow field, efficiency and performance of high-pressure turbine components of multi-stage steam turbines result in substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. These differences are integrally noticeable in terms of major discrepancies in aerodynamic losses, efficiency, and performance of the turbine. As a consequence, engine manufacturers are compelled to frequently calibrate their simulation package by performing a series of experiments before issuing efficiency and performance guaranty. The aim of this article is to investigate the cause of the aforementioned differences by utilizing a three-stage high-pressure research turbine with three-dimensional compound lean blades as the platform for experimental and numerical investigations. Experimental data were obtained using interstage aerodynamic measurements at three measurement stations, namely, downstream of the first rotor row, the second stator row, and the second rotor row. Detailed measurements were conducted using custom-designed five-hole probes traversed in both circumferential and radial directions. Aerodynamic measurements were carried out within a rotational speed range of 1800–2800 r/min. Numerical simulations were performed utilizing a commercially available computational fluid dynamics code. A detailed mesh of the three stages was created and used to simulate the corresponding operating conditions. The experimental and numerical results were compared following a critical discussion relative to differences mentioned above.

Author(s):  
Milind A. Bakhle ◽  
Jong S. Liu ◽  
Josef Panovsky ◽  
Theo G. Keith ◽  
Oral Mehmed

Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.


Author(s):  
Jie Gao ◽  
Qun Zheng ◽  
Xiaoquan Jia

The internal flow in turbomachinery is inherently unsteady, and the endwall losses are major sources of lost efficiency in high-pressure turbine cascades. Therefore, the investigation of the unsteady endwall flow interactions is valuable to improve the performance of high-pressure turbines. Unsteady and steady numerical investigations of endwall flow interactions of 1.5-stage shrouded turbines with straight and bowed vanes are performed using a three-dimensional Navier-Stokes viscous solver. Emphasis is placed on how unsteady stator-rotor interactions affect shrouded turbine endwall secondary flows, on the basis of which the feasibility of incorporating the unsteady endwall flow effects in the control of secondary flows is discussed in detail. Results from this investigation are well presented and discussed in this paper.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Philip L. Andrew ◽  
Harika S. Kahveci

Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed—one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a boundary layer code, MISES, versus experimental data from a 2D linear cascade approximating the performance of a moderately loaded mid-pitch section from a modern aircraft high-pressure turbine. The validation versus measured loading, turning, and total pressure loss is presented for a range of exit Mach numbers from ≈0.5 to 1.2 and across a range of incidence from −10 deg to +14.5 deg relative to design incidence.


Author(s):  
Frank Wagner ◽  
Arnold Kühhorn ◽  
Thomas Weiss ◽  
Dierk Otto

Today the design processes in the aero industry face many challenges. Apart from automation itself, a suitable parametric geometry setup plays a significant role in making workflows usable for optimization. At the same time there are tough requirements against the parametric model. For the lowest number of possible parameters, which should be intuitively ascertainable, a high flexibility has to be ensured. Within the parameter range an acceptable stability is necessary. Under these constraints the creation of such parametric models is a challenge, which should not be underestimated especially for a complex geometry. In this work different kinds of parametrization with different levels of complexity will be introduced and compared. Thereby several geometry elements will be used to handle the critical regions of the geometry. In the simplest case a combination of lines and arcs will be applied. These will be replaced by superior elements like a double arc construct or different formulations of b-splines. There will be an additional focus on the variation of spline degree and control points. To guarantee consistency a set of general parameters will be used next to the specific ones at the critical regions. The different parameter boundaries have a influence on the possible geometries and should therefore be tested separately before an optimization run. The analysis of the particular parametrization should be compared against the following points: • effort for the creation of the parametrization in theory • required time for the implementation in the CAD software • error-proneness/robustness of the parametrization • flexibility of the possible geometries • accuracy of the results • influence of the number of runs on the optimization • comparison of the best results Even though this assessment matrix is only valid for the considered case, it should show the general trend for the creation of these kinds of parametric models. This case takes a look at a firtree of a high pressure turbine blade, which is a scaled version of the first row from a small to medium aero engine. The failure of such a component can lead to a critical engine failure. For that reason, the modeling/meshing must be done very carefully and the contact between the blade and the disc is of crucial importance. It is possible to use scaling factors for three dimensional effects to reduce the problem to a two dimensional problem. Therefore the contact description is shortened from face-to-line to line-to-point. The main aim of the optimization is the minimization of the tension (notch stress) at the inner bends of the blade respectively at the outer bends of the disc. This has been the limiting factor in previous investigations. At this part of the geometry the biggest improvement are expected from a superior parametrization. Another important constraint in the optimization is the pressure contact (crushing stress) between blade and disc. Additionally the geometry is restricted with measurements of the lowest diameter at specific fillets to fulfill manufacturing requirements.


Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil as well as the inner and outer end-wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine, and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response, flush-mounted pressure transducers and miniature thermocouples to measure flow field parameters above and below the angel wing. Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code that had the capability to perform both steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for flow field analysis that will be provided in Part II.


Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


Author(s):  
Abdallah Chehade ◽  
Farid Breidi ◽  
Keith Scott Pate ◽  
John Lumkes

Valve characteristics are an essential part of digital hydraulics. The on/off solenoid valves utilized on many of these systems can significantly affect the performance. Various factors can affect the speed of the valves causing them to experience various delays, which impact the overall performance of hydraulic systems. This work presents the development of an adaptive statistical based thresholding real-time valve delay model for digital Pump/Motors. The proposed method actively measures the valve delays in real-time and adapts the threshold of the system with the goal of improving the overall efficiency and performance of the system. This work builds on previous work by evaluating an alternative method used to detect valve delays in real-time. The method used here is a shift detection method for the pressure signals that utilizes domain knowledge and the system’s historical statistical behavior. This allows the model to be used over a large range of operating conditions, since the model can learn patterns and adapt to various operating conditions using domain knowledge and statistical behavior. A hydraulic circuit was built to measure the delay time experienced from the time the signal is sent to the valve to the time that the valve opens. Experiments were conducted on a three piston in-line digital pump/motor with 2 valves per cylinder, at low and high pressure ports, for a total of six valves. Two high frequency pressure transducers were used in this circuit to measure and analyze the differential pressure on the low and high pressure side of the on/off valves, as well as three in-cylinder pressure transducers. Data over 60 cycles was acquired to analyze the model against real time valve delays. The results show that the algorithm was successful in adapting the threshold for real time valve delays and accurately measuring the valve delays. 


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


Author(s):  
H. Kanki ◽  
Y. Kaneko ◽  
M. Kurosawa ◽  
T. Yamamoto ◽  
Y. Yamamoto ◽  
...  

Abstract The causes of low-frequency vibration (subsynchronous vibration) of a high pressure turbine were investigated analytically and also via vibration excitation tests on actual machines under operation. From the results, it was concluded that low-frequency vibrations may be caused by either the decrease of the rotor system damping or by external forces, such as flow disturbance in the control stage and the rubbing between the rotor and casing. After identifying the cause of the low-frequency vibration, appropriate countermeasures such as installation of a squeeze-film damper and modification of valve opening sequence were taken. Vibration measurements and vibration excitation tests for the high pressure turbine under actual operating conditions were carried out in order to verify the validity of the countermeasures. These field tests confirmed that the problems of low-frequency vibration can be solved completely by taking the appropriate countermeasure depending on the cause of the vibration. This paper presents some field experiences of low-frequency vibration and the effective solution approach.


Sign in / Sign up

Export Citation Format

Share Document