Investigation on the microstructure and mechanical properties of Ti6Al4V titanium alloy electron beam welding joint

Author(s):  
Xilong Zhao ◽  
Xinhong Lu ◽  
Kun Wang ◽  
Feng He

Electron beam welding (EBW) is a fusion joining process particularly suitable for welding titanium plates. In the present work, 2.5 mm thickness Ti6Al4V titanium alloy plates were butt-welded together with backing plates by EBW. The detailed procedures of experiments were used to investigate the microstructure and mechanical properties of welded joints. The optimum welding speed was determined by microstructure examinations, microhardness tests, X-Ray diffraction tests, shear punch tests (SPT) and stress simulation calculations. The results showed that all microstructure of welded metal (WM) was martensite phase under the different welding speeds. In the heat-affected zone (HAZ), the martensite phase gradually evolved to be small and equiaxed. It can be seen that the microstructure of each region in welded joints did not change significantly. When the welding speed is between 8 mm/s and 14 mm/s, it can be seen from the macroscopic appearance of the joints that there was no utterly fused penetration between the butt plate and substrate. Finite element simulation was carried out for the no-penetration depth under different welding conditions, and it was found that the stress suffered by the small no-penetration depth was the smallest. Using different welding parameters shows that the engineering stress in WM was higher than other areas, and BM was the lowest. As welding speed increases from 8 mm/s to 14 mm/s, the variation of microhardness distribution was not evident.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 810 ◽  
Author(s):  
Defeng Mo ◽  
Yang Wang ◽  
Yongjian Fang ◽  
Tingfeng Song ◽  
Xiaosong Jiang

Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of welded joints were investigated. The microstructure of welded joints was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The mechanical properties of welded joints were investigated by tensile strength and micro-hardness tests. The results showed that welding speed had great effects on the weld appearance, microstructure, and mechanical properties of electron beam-welded joints. With an increase of welding speed, at the titanium alloy side, the amount of (Nb,Ti) solid solution was increased, while the formation of brittle FeTi was effectively suppressed. At the kovar alloy side, microstructure was mainly composed of soft Cu solid solution and some α-Fe + γ phases. In addition, higher welding speeds within a certain range was beneficial for eliminating the formation of cracks, and inhibiting the embrittlement of welded joints. Therefore, the tensile strength of welded joints was increased to about 120 MPa for a welding speed of 10 mm/s. Furthermore, the bonding mechanism of TC4/Nb/Cu/4J29 dissimilar welded joints had been investigated and detailed.


2019 ◽  
Vol 6 (11) ◽  
pp. 116508
Author(s):  
Li-Quan Yu ◽  
De-Feng Mo ◽  
Xue Li ◽  
Yong-Jian Fang ◽  
Xiao-Song Jiang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-jian Fang ◽  
Xiao-song Jiang ◽  
De-feng Mo ◽  
Ting-feng Song ◽  
Zhen-yi Shao ◽  
...  

Electron beam welding of a titanium alloy (Ti-6Al-4V) and a kovar alloy (Fe-29Ni-17Co) was performed by using a Cu/Nb multi-interlayer between them. Microstructure and composition of welded joints were analyzed by means of optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Mechanical properties of welded joints were evaluated by microhardness and tensile strength tests. Results indicated that in case of 0.22 mm thickness of Nb foil, microstructure of the titanium alloy side was mainly composed of Ti solid solution and some intermetallic compounds such as FeTi and CuTi2, whereas in case of 0.40 mm thickness of Nb foil, the appearance of weld was more uniform and hardness of the weld zone decreased sharply. However, tensile strength of welded joints was increased from 88.1 MPa for the 0.22 mm Nb foil to 150 MPa for the 0.40 mm Nb foil. It was found that thicker Nb foil could inhibit diffusion of Fe atoms towards the titanium alloy side, thus promoting the formation of Ti solid solution and a small amount of CuTi2 and eliminating FeTi. In addition, in both cases, Cu0.5Fe0.5Ti was found in the fusion zone of the titanium alloy side, which had an adverse effect on mechanical properties of welded joints.


Sign in / Sign up

Export Citation Format

Share Document