Investigation of the physical and mechanical properties of Ni–P and Ni–P–PTFE nanocomposite coatings deposited on aluminum alloy 7023

Author(s):  
Morteza Tajbakhsh ◽  
Omid Yaghobizadeh ◽  
Mahmood Farhadi Nia

In this study, various properties of Ni–P and Ni–P–PTFE coating fabricated by electroless process were investigated. These coatings were applied on aircraft-grade aluminum samples. The results showed that the addition of nano-PTFE particles decreases coating rate from 7.1 µm/h to 6.1 µm/h and hardness from 510 HV to 200 HV. Also by increasing the pH value, coating rate increases from 1 µm/h to 7 µm/h. Increasing the solution temperature from 75 ℃ to 90 ℃ also increases the hardness of coating from 125 HV to 210 HV. The results showed that the heat treatment at 300 ℃ for 4 h increases the hardness up to 375 HV due to formation of Ni3P hard phase in Ni–P–PTFE coating. Addition of PTFE particles have improved tribological properties due to its lubricating effects and simultaneously, have reduced corrosion resistance compared to Ni–P coatings, so that the corrosion current for Al, Ni–P, and Ni–P–PTFE coatings is −880, −550, and −770 μA/cm2, respectively.

2017 ◽  
Vol 754 ◽  
pp. 11-14 ◽  
Author(s):  
Marialaura Tocci ◽  
Lorenzo Montesano ◽  
Annalisa Pola ◽  
Marcello Gelfi ◽  
Marina La Vecchia

In the present work, the effect of Cr and Mn addition on corrosion resistance was investigated on AlSi3Mg alloy. Potentiondynamic corrosion tests in a 3.5 wt. % NaCl solution were performed on samples in different heat-treated conditions, and corrosion current density and potential were determined by Tafel method. Brinnel hardness measurements were also carried out in order to couple corrosion resistance with mechanical properties. It was interestingly found that Cr presence enhanced mechanical properties and corrosion resistance in comparison with the base alloy.


2006 ◽  
Vol 324-325 ◽  
pp. 695-698 ◽  
Author(s):  
Yu Feng Zheng ◽  
Bao Lai Wang

Recently, people devote to the development of beta titanium alloys which have better biocompatibility because of the addition of Mo, Nb, Ta, Zr, Sn, et al. In this paper, the effects of heat treatment and cold roll deformation on the mechanical properties of the Ti-11.3Mo-6.6Zr-4.3Sn alloy (TMZS) are investigated by tensile test. The results show that the excellent combination of strength and ductility can be obtained by heat treatment or cold deformation. The TMZS alloy can obtain intermediate modulus, stronger than nickel titanium, weaker than stainless steel. The corrosion resistance of this alloy in the Hank's solution, 0.9% NaCl physiological solution and artificial saliva with different pH values at 37 are investigated by means of open-circuit potential (OCP), Tafel and potentiodynamic anodic polarization techniques. All the test results suggest that the TMZS alloy has excellent corrosion resistance in the three simulated solutions especially in the artificial saliva and has a large potential for biomedical application. In addition, the pH value and simulated solutions have some influence on the corrosion resistance of the TMZS alloy.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1953 ◽  
Vol 2 (12) ◽  

Abstract ALUMINUM 62S is a magnesium silicide type of wrought aluminum alloy with high resistance to fresh and salt water corrosion. It responds to age hardening heat treatment for high mechanical properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-11. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


Author(s):  
G.V. Shlyakhova ◽  
◽  
A.V. Bochkareva ◽  
M.V. Nadezhkin ◽  
◽  
...  

This study presents experimental results of structural analysis, such as phase composition, grains size assessment, strength and hardness of Ni-SPAN-C alloy 902 after various heat treatment modes (hardening and aging for stress relaxation). A thermal treatment mode has been selected to obtain higher physical and mechanical properties of the elinvar alloy. It is shown that the improvement of the alloy structure in thermal treatment occurs due to the thermic stresses, as well as the formation and dissolution of intermetallides.


Sign in / Sign up

Export Citation Format

Share Document