Evaluation of the residual stress in stainless steel 304L hydraulically expanded joints

Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.

2012 ◽  
Vol 578 ◽  
pp. 82-86 ◽  
Author(s):  
Long Shi Gao

Multi-pass welds are used in pipes with stainless steel. The complicated temperature field and residual stresses in these welded structures are very important. The finite element method is used to simulate residual stress in multi-pass butt-welds in this paper. Element birth technique is implemented to model multi-pass welded 304 Stainless Steel Pipes. One-way coupled Thermo-mechanical analysis is adopted to calculate the residual stresses, that the structural analysis takes the temperature distributions as thermal input. The results provide reference for the structure integrity assessment of welded pipes.


Author(s):  
Son Do ◽  
David Smith ◽  
Mike Smith

Operation of components at high temperature in power stations leads to the relaxation of residual stresses created in welded stainless steel cylinders. In this work a number of Esshete 1250 stainless steel cylinders containing girth welds and repair welds were manufactured. Two cylinders were then put to a furnace for 10,000hrs and 20,000hrs at 650°C. These conditions simulated the effects of aging. The residual stresses in the girth welds and repair welds before and after aging were measured using a number of methods based around the Deep Hole Drilling method. This paper describes the experiments carried out to obtain the through-wall distribution of stresses. It is evident that there was significant relaxation of the residual stresses due to aging. The peak tensile residual stress in girth welds was relaxed from 500MPa to 110MPa and the peak compressive residual stress in girth welds was relaxed from −301MPa to −135MPa after 10,000 hours at 650°C. The repair weld residual stresses were not only relaxed at the peak stresses but relaxed average levels from 220MPa to 140MPa for hoop stresses and from 180MPa to 145MPa for axial stresses. The implications of these findings are discussed in the context of future fracture tests.


Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


2000 ◽  
Vol 123 (1) ◽  
pp. 130-134
Author(s):  
Makoto Hayashi ◽  
Kunio Enomoto

Changes in the residual stress in a worked surface layer of type 304 austenitic stainless steel due to tensile deformation were measured by the X-ray diffraction residual stress measuring method. The compressive residual stresses introduced by end-mill, end-mill side cutter, and grinder were easily changed into tensile stresses when the plate specimens were subjected to tensile stress greater than the yield stress of the solid solution heat-treated material. The residual stresses after the tensile deformation depend on the initial residual stresses and the degree of preliminary working. The behavior of the residual stress changes can be interpreted if the surface-worked material is regarded as a composite made of solid solution heat-treated material and work-hardened material.


Author(s):  
J.-S. Park ◽  
J.-M. Kim ◽  
G.-H. Sohn ◽  
Y.-H. Kim

This study is concerned with the mechanics analysis of residual stress improvement by the heat sink method applied to a dissimilar metal weld (DMW) for the use in nuclear power plants. The DMW joint considered here is composed of ferritic low-alloy steel nozzle, austenitic stainless steel safe-end, and nickel-base alloy A52 weld metal. To prepare the DMW joint with a narrow-gap, the gas tungsten arc welding (GTAW) process is utilized, and the heat sink method is employed to control thermal gradients developed in the critical region of work pieces during welding. Weld residual stresses are computed by the non-linear thermal elasto-plastic analysis using the axisymmetric finite element (FE) model, for which temperature-dependent thermal and mechanical properties of the materials are considered. A full-scale mock-up test is conducted to validate analytical solution for the DMW joint, and residual stresses are measured by using the hole-drilling method. Results of the FE modeling and mock-up test for the DMW joint are compared and effects of the heat sink method are discussed. It is found that a significant amount of residual compressive stresses can be developed on the inner surface of the DMW joint by using the heat sink method, which can effectively reduce the susceptibility of the welded materials to stress corrosion or fatigue cracking.


Author(s):  
Takuro Terajima ◽  
Takashi Hirano

As a counter measurement of intergranular stress corrosion cracking (IGSCC) in boiling water reactors, the induction heating stress improvement (IHSI) has been developed as a method to improve the stress factor, especially residual stresses in affected areas of pipe joint welds. In this method, a pipe is heated from the outside by an induction coil and cooled from the inside with water simultaneously. By thermal stresses to produce a temperature differential between the inner and outer pipe surfaces, the residual stress inside the pipe is improved compression. IHSI had been applied to weld joints of austenitic stainless steel pipes (P-8+P-8). However IHSI had not been applied to weld joints of nickel-chromium-iron alloy (P-43) and austenitic stainless steel (P-8). This weld joint (P-43+P-8) is used for instrumentation nozzles in nuclear power plants’ reactor pressure vessels. Therefore for the purpose of applying IHSI to this one, we studied the following. i) Investigation of IHSI conditions (Essential Variables); ii) Residual stresses after IHSI; iii) Mechanical properties after IHSI. This paper explains that IHSI is sufficiently effective in improvement of the residual stresses for this weld joint (P-43+P-8), and that IHSI does not cause negative effects by results of mechanical properties, and IHSI is verified concerning applying it to this kind of weld joint.


2020 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Makoto Hayashi

In many of machine parts and structural components, materials surface would be worked. In this study, residual stresses on the surfaces were measured by X-ray diffraction method, and effects of surface working on the residual stresses were examined. In case of lathe machining of type 304 stainless steel bar, the residual stresses in circumferential directions are tensile, and those in axial directions are almost compressive. Highly tensile residual stresses in the circumferential directions were improved by emery paper polishing. 10 to 20 times of polishing changes high tensile residual stresses to compressive residual stresses. In the case of shot peening on a type 304 stainless steel plate, the compressive residual stress inside is several hundred MPa lower than that on the surface. By applying the emery paper polishing to the shot peened surface 10 or 20 times, the residual stress on the surface is improved to −700 MPa. While fatigue strength at 288 °C in the air of the shot peened material is 30 MPa higher than solution heat treated and electro-polished material, the fatigue strength of the shot peened and followed by emery paper polished material is 60 MPa higher. Thus, the emery paper polishing is simple and a very effective process for improvement of the residual stresses.


2006 ◽  
Vol 3-4 ◽  
pp. 125-130 ◽  
Author(s):  
Khaled Y. Benyounis ◽  
Abdul Ghani Olabi ◽  
M.S.J. Hashmi

Residual stresses are an integral part of the total stress acting on any component in service. It is important to determine and/or predict the magnitude, nature and direction of the residual stress to estimate the life of important engineering parts, particularly welded components. This work aims to introduce experimental models to predict residual stresses in the heat-affected zone (HAZ). These models specify the effect of laser welding input parameters on maximum residual stress and its direction. The process input variables considered in this study are laser power (1.03 - 1.368 kW), travel speed (26.48 – 68.52 cm/min) and focal point position (- 1 to 0 mm). Laser butt-welding of 304 stainless steel plates of 3 mm thick were investigated using a 1.5 kW CW CO2 Rofin laser as a welding source. Hole-drilling method was employed to measure the magnitude, and direction of the maximum principal stress in and around the HAZ, using a CEA-06- 062UM-120 strain gauge rosette, which allows measurement of the residual stresses close to the weld bead. The experiment was designed based on Response Surface Methodology (RSM). Fifteen different welding conditions plus 5 repeat tests were carried out based on the design matrix. Maximum principal residual stresses and their directions were calculated for the twenty samples. The stepwise regression method was selected using Design-expert software to fit the experimental responses to a second order polynomial. Sequential F test and other adequacy measures were then used to check the models adequacy. The experimental results indicate that the proposed mathematical models could adequately describe the residual stress within the limits of the factors being studied. Using the models developed, the main and interaction effect of the process input variables on the two responses were determined quantitatively and presented graphically. It is observed that the travel speed and laser power are the main factors affecting the behavior of the residual stress. It is recommended to use the models to find the optimal combination of welding conditions that lead to minimum distortion.


Sign in / Sign up

Export Citation Format

Share Document