Unsteady flow of three-dimensional Maxwell nanofluid with variables properties over a stretching surface

Author(s):  
Muhammad N Khan ◽  
Shafiq Ahmad ◽  
Sohail Nadeem ◽  
El-Sayed M. Sherif ◽  
Hijaz Ahmad ◽  
...  

The present article focuses on the time-dependent three-dimensional Maxwell fluid flow with temperature-dependent fluid properties along the stretching sheet. The heat and mass transfer analysis are presented in the occurrence of activation energy, convective boundary condition, and non-uniform heat source/sink effect. The flow model is converted into a system of coupled ODEs with the help of a similarity transformation. The numerical built-in technique Bvp4c is employed to solve the obtained coupled ODEs. The graphical outcomes are obtained against the various parameters and discussed. It is seen from the graphs that fluid velocity diminishes for stronger values of relaxation parameter and shows an opposite trend for the variable viscosity parameter. Moreover, it is noted from the tabulated data that the heat and mass transfer rate reduces for the stronger values of unsteadiness and the variable viscosity parameter.

2018 ◽  
Vol 388 ◽  
pp. 158-170 ◽  
Author(s):  
Poojari Borappa Sampath Kumar ◽  
Basavarajappa Mahanthesh ◽  
Bijjanal Jayanna Gireesha ◽  
S. Manjunatha

Three-dimensional mixed convection flow, heat and mass transfer of Eyring-powell fluid over a convectively heated stretched sheet is inspected in this paper. The encouragement of Brownian motion, Thermophoresis and thermal radiations are accounted. Appropriate transformations are used to reduce the principal PDE’s into set of coupled highly non-linear ODE’s which are then solved numerically using RKF fourth-fifth order method. The consequence of several parameters on flow, heat and mass transfer characteristics are deliberated with the help of graphs and tables. It is observed that, the temperature and concentration profiles diminish for higher values mixed convection parameter.


2017 ◽  
Vol 10 ◽  
pp. 93-106 ◽  
Author(s):  
M.K. Teixeira de Brito ◽  
D.B. Teixeira de Almeida ◽  
A.G. Barbosa de Lima ◽  
L. Almeida Rocha ◽  
E. Santana de Lima ◽  
...  

This work aims to study heat and mass transfer in solids with parallelepiped shape with particular reference to drying process. A transient three-dimensional mathematical model based on the Fick ́s and Fourier ́s Laws was developed to predict heat and mass transport in solids considering constant physical properties and convective boundary conditions at the surface of the solid. The analytical solution of the governing equations was obtained using the method of separation of variables. The study was applied in the drying of common ceramic bricks. Predicted results of the heating and drying kinetics and the moisture and temperature distributions inside the material during the process, are compared with experimental data and good agreement was obtained. It has been found that the vertices of the solid dry and heat first. This provokes thermal and hydric stresses inside the material, which may compromise the quality of the product after drying.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fazle Mabood ◽  
Nopparat Pochai ◽  
Stanford Shateyi

A theoretical investigation is carried out to examine the effects of volume fraction of nanoparticles, suction/injection, and convective heat and mass transfer parameters on MHD stagnation point flow of water-based nanofluids (Cu and Ag). The governing partial differential equations for the fluid flow, temperature, and concentration are reduced to a system of nonlinear ordinary differential equations. The derived similarity equations and corresponding boundary conditions are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method. To exhibit the effect of the controlling parameters on the dimensionless velocity, temperature, nanoparticle volume fraction, skin friction factor, and local Nusselt and local Sherwood numbers, numerical results are presented in graphical and tabular forms. It is found that the friction factor and heat and mass transfer rates increase with magnetic field and suction/injection parameters.


2010 ◽  
Vol 297-301 ◽  
pp. 728-732
Author(s):  
N. Mimouni ◽  
Salahs Chikh ◽  
Rachid Bennacer

A 3D numerical analysis is carried out to investigate heat and mass transfer in a partly porous cavity of high aspect ratio. The goal is to determine the best physical and geometrical parameters that allow optimal heat and mass transfer rate in such domain used in a solar adsorption cooling system. The computational domain consists of a tall cavity heated on the left vertical wall and cooled on the opposing wall. The SIMPLE algorithm is used to handle the velocity pressure coupling. Simulation results allow determining the optimal configuration of the used porous substrate and plain fluid position in the cavity in order to optimize the performance of such solar adsorption cooling installation.


Sign in / Sign up

Export Citation Format

Share Document