Dynamic modeling, system identification and comparative study of various control strategies for a spatial parallel manipulator

Author(s):  
Mervin Joe Thomas ◽  
Shoby George ◽  
Deepak Sreedharan ◽  
ML Joy ◽  
AP Sudheer

The significant challenges seen with the mathematical modeling and control of spatial parallel manipulators are its difficulty in the kinematic formulation and the inability to real-time control. The analytical approaches for the determination of the kinematic solutions are computationally expensive. This is due to the passive joints, solvability issues with non-linear equations, and inherent kinematic constraints within the manipulator architecture. Therefore, this article concentrates on an artificial neural network–based system identification approach to resolve the complexities of mathematical formulations. Moreover, the low computation time with neural networks adds up to its advantage of real-time control. Besides, this article compares the performance of a constant gain proportional–integral–derivative (PID), variable gain proportional–integral–derivative, model predictive controller, and a cascade controller with combined variable proportional–integral–derivative and model predictive controller for real-time tracking of the end-effector. The control strategies are simulated on the Simulink model of a 6-degree-of-freedom 3-PPSS (P—prismatic; S—spherical) parallel manipulator. The simulation and real-time experiments performed on the fabricated manipulator prototype indicate that the proposed cascade controller with position and velocity compensation is an appropriate method for accurate tracking along the desired path. Also, training the network using the experimentally generated data set incorporates the mechanical joint approximations and link deformities present in the fabricated model into the predicted results. In addition, this article showcases the application of Euler–Lagrangian formalism on the 3-PPSS parallel manipulator for its dynamic model incorporating the system constraints. The Lagrangian multipliers include the influence of the constraint forces acting on the manipulator platform. For completeness, the analytical model results have been verified using ADAMS for a pre-defined end-effector trajectory.

1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


2014 ◽  
Vol 31 (4) ◽  
pp. 611-618 ◽  
Author(s):  
Hyosoo Kim ◽  
Yejin Kim ◽  
Minsoo Kim ◽  
Wenhua Piao ◽  
Jeasung Gee ◽  
...  

2018 ◽  
Vol 2017 (2) ◽  
pp. 552-560 ◽  
Author(s):  
Manfred Schütze ◽  
Maja Lange ◽  
Michael Pabst ◽  
Ulrich Haas

Abstract This contribution serves two purposes. (1) It presents an updated version of the Astlingen example developed by the working group ‘Integral Real Time Control’ of the German Water Association (DWA), which serves as a benchmark example for the setup and evaluation of real time control strategies. As this benchmark is also intended for educational use, it demonstrates a simple RTC algorithm, illustrating the main concepts of RTC of drainage system. (2) The paper also encourages the preliminary analysis of the potential feasibility and benefit of a temporal increase of inflow to the wastewater treatment plant (WWTP) before analysing the WWTP behaviour in detail. For the present example, RTC within the sewer system alone led to almost the same reduction of overflow volume as permitting the inflow to the WWTP to be increased for 6 h within any 24 h, if at all permitted.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1034 ◽  
Author(s):  
Congcong Sun ◽  
Jan Lorenz Svensen ◽  
Morten Borup ◽  
Vicenç Puig ◽  
Gabriela Cembrano ◽  
...  

The advanced control of urban drainage systems (UDS) has great potential in reducing pollution to the receiving waters by optimizing the operations of UDS infrastructural elements. Existing controls vary in complexity, including local and global strategies, Real-Time Control (RTC) and Model Predictive Control (MPC). Their results are, however, site-specific, hindering a direct comparison of their performance. Therefore, the working group ‘Integral Real-Time Control’ of the German Water Association (DWA) developed the Astlingen benchmark network, which has been implemented in conceptual hydrological models and applied to compare RTC strategies. However, the level of detail of such implementations is insufficient for testing more complex MPC strategies. In order to provide a benchmark for MPC, this paper presents: (1) The implementation of the conceptual Astlingen system in an open-source hydrodynamic model (EPA-SWMM), and (2) the application of an MPC strategy to the developed SWMM model. The MPC strategy was tested against traditional and well-established local and global RTC approaches, demonstrating how the proposed benchmark system can be used to test and compare complex control strategies.


2011 ◽  
Vol 44 (1) ◽  
pp. 7660-7665
Author(s):  
A. Berna ◽  
P. Castillo ◽  
G. Sanahuja ◽  
F. González ◽  
P. García ◽  
...  

2015 ◽  
Vol 78 ◽  
pp. 83-105 ◽  
Author(s):  
Daniel Hernández ◽  
Juan Carlos Muñoz ◽  
Ricardo Giesen ◽  
Felipe Delgado

Sign in / Sign up

Export Citation Format

Share Document