scholarly journals Compositional data analysis for physical activity, sedentary time and sleep research

2017 ◽  
Vol 27 (12) ◽  
pp. 3726-3738 ◽  
Author(s):  
Dorothea Dumuid ◽  
Tyman E Stanford ◽  
Josep-Antoni Martin-Fernández ◽  
Željko Pedišić ◽  
Carol A Maher ◽  
...  

The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children’s daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206013 ◽  
Author(s):  
Irene Rodríguez-Gómez ◽  
Asier Mañas ◽  
José Losa-Reyna ◽  
Leocadio Rodríguez-Mañas ◽  
Sebastien F. M. Chastin ◽  
...  

Author(s):  
Margo Ketels ◽  
Charlotte Lund Rasmussen ◽  
Mette Korshøj ◽  
Nidhi Gupta ◽  
Dirk De Bacquer ◽  
...  

In contrast to leisure time physical activity (LTPA), occupational physical activity (OPA) does not have similar beneficial health effects. These differential health effects might be explained by dissimilar effects of LTPA and OPA on cardiorespiratory fitness (CRF). This study investigated cross-sectional associations between different physical behaviours during both work and leisure time and CRF by using a Compositional Data Analysis approach. Physical behaviours were assessed by two accelerometers among 309 workers with various manual jobs. During work time, more sedentary behaviour (SB) was associated with higher CRF when compared relatively to time spent on other work behaviours, while more SB during leisure time was associated with lower CRF when compared to other leisure time behaviours. Reallocating more time to moderate-to-vigorous physical activity (MVPA) from the other behaviours within leisure time was positively associated with CRF, which was not the case for MVPA during work. The results of our study are in line with the physical activity health paradox and we call for further study on the interaction between LTPA and OPA by implementing device-worn measures in a longitudinal design. Our results highlight the need for recommendations to take into account the different effects of OPA and LTPA on CRF.


2019 ◽  
Vol 16 (10) ◽  
pp. 811-817 ◽  
Author(s):  
Ryan D. Burns ◽  
Youngwon Kim ◽  
Wonwoo Byun ◽  
Timothy A. Brusseau

Background: To examine the relationships among school day sedentary times (SED), light physical activity (LPA), and moderate to vigorous physical activity (MVPA) with gross motor skills in children using Compositional Data Analysis. Methods: Participants were 409 children (mean age = 8.4 [1.8] y) recruited across 5 low-income schools. Gross motor skills were assessed using the test for gross motor development—third edition (TGMD-3), and physical activity was assessed using accelerometers. Isometric log-ratio coordinates were calculated by quantifying the relative proportion of percentage of the school day spent in SED, LPA, and MVPA. The associations of the isometric log-ratio coordinates with the TGMD-3 scores were estimated using general linear mixed-effects models adjusted for age, body mass index, estimated aerobic capacity, and school affiliation. Results: A higher proportion of the school day spent in %MVPA relative to %SED and %LPA was significantly associated with higher TGMD-3 total scores (γMVPA = 14.44, P = .01). This relationship was also observed for the ball skills subtest scores (γMVPA = 16.12, P = .003). Conclusions: Replacing %SED and %LPA with %MVPA during school hours may be an effective strategy for improving gross motor skills, specifically ball skills, in low-income elementary school-aged children.


Author(s):  
Lisa-Marie Larisch ◽  
Emil Bojsen-Møller ◽  
Carla F. J. Nooijen ◽  
Victoria Blom ◽  
Maria Ekblom ◽  
...  

Intervention studies aiming at changing movement behavior have usually not accounted for the compositional nature of time-use data. Compositional data analysis (CoDA) has been suggested as a useful strategy for analyzing such data. The aim of this study was to examine the effects of two multi-component interventions on 24-h movement behavior (using CoDA) and on cardiorespiratory fitness among office workers; one focusing on reducing sedentariness and the other on increasing physical activity. Office workers (n = 263) were cluster randomized into one of two 6-month intervention groups, or a control group. Time spent in sedentary behavior, light-intensity, moderate and vigorous physical activity, and time in bed were assessed using accelerometers and diaries, both for 24 h in total, and for work and leisure time separately. Cardiorespiratory fitness was estimated using a sub-maximal cycle ergometer test. Intervention effects were analyzed using linear mixed models. No intervention effects were found, either for 24-h behaviors in total, or for work and leisure time behaviors separately. Cardiorespiratory fitness did not change significantly. Despite a thorough analysis of 24-h behaviors using CoDA, no intervention effects were found, neither for behaviors in total, nor for work and leisure time behaviors separately. Cardiorespiratory fitness did not change significantly. Although the design of the multi-component interventions was based on theoretical frameworks, and included cognitive behavioral therapy counselling, which has been proven effective in other populations, issues related to implementation of and compliance with some intervention components may have led to the observed lack of intervention effect.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Antoni Susin ◽  
Yiwen Wang ◽  
Kim-Anh Lê Cao ◽  
M Luz Calle

Abstract Though variable selection is one of the most relevant tasks in microbiome analysis, e.g. for the identification of microbial signatures, many studies still rely on methods that ignore the compositional nature of microbiome data. The applicability of compositional data analysis methods has been hampered by the availability of software and the difficulty in interpreting their results. This work is focused on three methods for variable selection that acknowledge the compositional structure of microbiome data: selbal, a forward selection approach for the identification of compositional balances, and clr-lasso and coda-lasso, two penalized regression models for compositional data analysis. This study highlights the link between these methods and brings out some limitations of the centered log-ratio transformation for variable selection. In particular, the fact that it is not subcompositionally consistent makes the microbial signatures obtained from clr-lasso not readily transferable. Coda-lasso is computationally efficient and suitable when the focus is the identification of the most associated microbial taxa. Selbal stands out when the goal is to obtain a parsimonious model with optimal prediction performance, but it is computationally greedy. We provide a reproducible vignette for the application of these methods that will enable researchers to fully leverage their potential in microbiome studies.


2020 ◽  
Vol 45 (1) ◽  
pp. 266-275 ◽  
Author(s):  
Youngwon Kim ◽  
Ryan D. Burns ◽  
Duck-chul Lee ◽  
Gregory J. Welk

Abstract Background/objectives Evidence on the associations between lifestyle movement behaviors and obesity has been established without taking into account the time-constrained nature of categorized, time-based lifestyle behaviors. We examined the associations of sleep, sedentary behavior (SED), light-intensity physical activity (LPA), and moderate-to-vigorous PA (MVPA) with body mass index (BMI) using Compositional Data Analysis (CoDA), and compared the associations between a report-based method (24-h Physical Activity Recall; 24PAR) and a monitor-based method (SenseWear Armband; SWA). Subjects/methods Replicate data from a representative sample of 1247 adults from the Physical Activity Measurement Survey (PAMS) were used in the study. Participants completed activity monitoring on two randomly selected days, each of which required wearing a SWA for a full day, and then completing a telephone-administered 24PAR the following day. Relationships among behavioral compositional parts and BMI were analyzed using CoDA via multiple linear regression models with both 24PAR and SWA data. Results Using 24PAR, time spent in sleep (γ = −3.58, p = 0.011), SED (γ = 3.70, p = 0.002), and MVPA (γ = −0.53, p = 0.018) was associated with BMI. Using SWA, time spent in sleep (γ = −5.10, p < 0.001), SED (γ = 8.93, p < 0.001), LPA (γ = −3.12, p < 0.001), and MVPA (γ = −1.43, p < 0.001) was associated with BMI. The SWA models explained more variance in BMI (R2 = 0.28) compared with the 24PAR models (R2 = 0.07). The compositional isotemporal substitution models revealed reductions in BMI when replacing SED by MVPA, LPA (not with 24PAR) or sleep for both 24PAR and SWA, but the effect estimates were larger with SWA. Conclusions Favorable levels of relative time spent in lifestyle movement behaviors were, in general, associated with decreased BMI. The observed associations were stronger using the monitor-based SWA method compared with the report-based 24PAR method.


2020 ◽  
Author(s):  
Luis P.V. Braga ◽  
Dina Feigenbaum

AbstractBackgroundCovid-19 cases data pose an enormous challenge to any analysis. The evaluation of such a global pandemic requires matching reports that follow different procedures and even overcoming some countries’ censorship that restricts publications.MethodsThis work proposes a methodology that could assist future studies. Compositional Data Analysis (CoDa) is proposed as the proper approach as Covid-19 cases data is compositional in nature. Under this methodology, for each country three attributes were selected: cumulative number of deaths (D); cumulative number of recovered patients(R); present number of patients (A).ResultsAfter the operation called closure, with c=1, a ternary diagram and Log-Ratio plots, as well as, compositional statistics are presented. Cluster analysis is then applied, splitting the countries into discrete groups.ConclusionsThis methodology can also be applied to other data sets such as countries, cities, provinces or districts in order to help authorities and governmental agencies to improve their actions to fight against a pandemic.


Sign in / Sign up

Export Citation Format

Share Document