scholarly journals Comparative proteomics—network analysis of proteins responsible for ursolic acid–induced cytotoxicity in colorectal cancer cells

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769501 ◽  
Author(s):  
Qiaoyan Cai ◽  
Jing Lin ◽  
Ling Zhang ◽  
Jiumao Lin ◽  
Lili Wang ◽  
...  

Ursolic acid is a key active compound present in many medicinal herbs that have been widely used in traditional Chinese medicine for the clinical treatment of various cancers. However, the precise mechanisms of its antitumor activity have been poorly understood. To identify the cellular targets of ursolic acid, two-dimensional gel electrophoresis combined with mass spectrometry was performed in this study, which identified 15 proteins with significantly altered levels in protein expression. This demonstrated that ursolic acid–induced cytotoxicity in colorectal cancer cells involves dysregulation in protein folding, signal transduction, cell proliferation, cell cycle, and apoptosis. Corresponding protein regulation was also confirmed by Western blotting. Furthermore, the study of functional association between these 15 proteins revealed that 10 were closely related in a protein–protein interaction network, whereby the proteins either had a direct interaction with each other or were associated via only one intermediary protein. In this instance, the ATP5B/CALR/HSP90B1/HSPB1/HSPD1-signaling network was revealed as the predominant target which was associated with the majority of the observed protein–protein interactions. As a result, the identified targets may be useful in explaining the anticancer mechanisms of ursolic acid and as potential targets for colorectal cancer therapy.

2018 ◽  
Vol 20 (1) ◽  
pp. 114 ◽  
Author(s):  
Karam Kim ◽  
Eun Shin ◽  
Ji Jung ◽  
Ji Park ◽  
Dong Kim ◽  
...  

Though ursolic acid (UA) isolated from Oldenlandia diffusa was known to exhibit anti-cancer, anti-inflammatory, and anti-obesity effects, the underlying antitumor mechanism of ursolic acid was not fully understood to date. Thus, in the present study, the apoptotic mechanism of ursolic acid was elucidated in HCT116 and HT29 colorectal cancer cells in association with STAT3 and microRNA-4500 (miR-4500) by MTT assay, Terminal deoxynucleotidyl transferase-dT-mediated dUTP nick end labelling (TUNEL) assay, cell cycle analysis, immunofluorescence, and Western blotting. Ursolic acid significantly exerted cytotoxicity, increased TUNEL positive cells and sub-G1 apoptotic portion, induced cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP) and caspase 3 in HCT116 and HT29 cells. Of note, ursolic acid attenuated the expression of anti-apoptotic proteins such as Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) and also blocked nuclear translocation of STAT3 in colorectal cancer cells. Notably, ursolic acid increased the expression level of miR-4500 in HCT116 cells by qRT-PCR analysis and conversely miR-4500 inhibitor reversed cytotoxic, anti-proliferative, and apoptotic effects by increasing TUNEL positive cells, PARP cleavage and inhibiting p-STAT3 in ursolic acid treated colorectal cancer cells. Overall, our findings provide evidence that usolic acid induces apoptosis in colorectal cancer cells partially via upregulation of miR-4500 and inhibition of STAT3 phosphorylation as a potent anti-cancer agent for colorectal cancer therapy.


2013 ◽  
Vol 24 (4) ◽  
pp. 706-712 ◽  
Author(s):  
Cristina P.R. Xavier ◽  
Cristovao F. Lima ◽  
Dalila F.N. Pedro ◽  
Jonathan M. Wilson ◽  
Karsten Kristiansen ◽  
...  

2009 ◽  
Vol 281 (2) ◽  
pp. 162-170 ◽  
Author(s):  
Cristina P.R. Xavier ◽  
Cristovao F. Lima ◽  
Ana Preto ◽  
Raquel Seruca ◽  
Manuel Fernandes-Ferreira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document