Nonlinear analysis of a crack in 2D piezoelectric semiconductors with exact electric boundary conditions

Author(s):  
MingHao Zhao ◽  
XinFei Li ◽  
Chunsheng Lu ◽  
QiaoYun Zhang

In this paper, taking the exact electric boundary conditions into account, we propose a double iteration method to analyze a crack problem in a two-dimensional piezoelectric semiconductor. The method consists of a nested loop process with internal and outside circulations. In the former, the electric field and electron density in governing equations are constantly modified with the fixed boundary conditions on crack face and the crack opening displacement; while in the latter, the boundary conditions on crack face and the crack opening displacement are modified. Such a method is verified by numerically analyzing a crack with an impermeable electric boundary condition. It is shown that the electric boundary condition on crack face largely affects the electric displacement intensity factor near a crack tip in piezoelectric semiconductors. Under exact crack boundary conditions, the variation tendency of the electric displacement intensity factor versus crack size is quite different from that under an impermeable boundary condition. Thus, exact crack boundary conditions should be adopted in analysis of crack problems in a piezoelectric semiconductor.

2014 ◽  
Vol 618 ◽  
pp. 123-150
Author(s):  
Michael Wünsche ◽  
Andrés Sáez ◽  
Felipe García-Sánchez ◽  
Chuan Zeng Zhang ◽  
Jose Domínguez

Boundary element method (BEM) formulations for transient dynamic crack analysis intwo-dimensional (2D) multifield materials are reviwed in this paper. Both homogeneous and lin-ear piezoelectric as well as magnetoelectroelastic material models are considered. Special attentionis paid to properly modeling the non-linear crack-face contact and semi-permeable electric/magneticboundary conditions. Implementation of the corresponding time-domain BEM(TDBEM) is discussedin detail. The proposed TDBEM uses a Galerkin-method for the spatial discretization, whilst thecollocation method is considered for the temporal discretization. Iterative solution algorithms aredeveloped to compute the non-linear crack-face boundary conditions. Crack-tip elements that ac-count for the square-root local behavior of the crack opening displacements (CODs) at the crack-tipsare implemented. In this way, stress intensity factors (SIF), electric displacement intensity factor(EDIF) and magnetic induction intensity factor (MIIF) may be accurately evaluated from the nu-merically computed CODs at the closest nodes to the crack-tips. Numerical examples involving sta-tionary cracks in piezoelectric and magnetoelectroelastic solids under different combined (mechani-cal/electric/magnetic) impact loadings are investigated, in order to illustrate the effectiveness of theproposed approach and characterize the influence of the semi-permeable crack-face boundary condi-tions on the dynamic field intensity factors.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Dongsheng Yang ◽  
Guanting Liu

Based on the Gurtin-Murdoch surface/interface model and complex potential theory, by constructing a new conformal mapping, the electrically permeable boundary condition with surface effect is established, and the antiplane fracture problem of three nanocracks emanating from a hexagonal nanohole in one-dimensional hexagonal piezoelectric quasicrystals with surface effect is studied. The exact solutions of the stress intensity factor of the phonon field and the phason field, the electric displacement intensity factor, and the energy release rate are obtained under the two electrically permeable and the electrically impermeable boundary conditions. The numerical examples show the influence of surface effect on the stress intensity factors of the phonon field and the phason field, the electric displacement intensity factor, and the energy release rate under the two boundary conditions. It can be seen that the surface effect leads to the coupling of the phonon field, phason field, and electric field, and with the decrease of cavity size, the influence of surface effect is more obvious.


2016 ◽  
Vol 8 (4) ◽  
pp. 573-587 ◽  
Author(s):  
R. R. Bhargava ◽  
Pooja Raj Verma

AbstractA problem of two equal, semi-permeable, collinear cracks, situated normal to the edges of an infinitely long piezoelectric strip is considered. Piezoelectric strip being prescribed out-of-plane shear stress and in-plane electric-displacement. The Fourier series and integral equation methods are adopted to obtain analytical solution of the problem. Closed-form analytic expressions are derived for various fracture parameters viz. crack-sliding displacement, crack opening potential drop, field intensity factors and energy release rate. An numerical case study is considered for poled PZT–5H, BaTiO3 and PZT–6B piezoelectric ceramics to study the effect of applied electro-mechanical loadings, crack-face boundary conditions as well as inter-crack distance on fracture parameters. The obtained results are presented graphically, discussed and concluded.


2002 ◽  
Vol 69 (3) ◽  
pp. 244-253 ◽  
Author(s):  
S. A. Meguid ◽  
X. Zhao

The interface crack problem of bonded piezoelectric and elastic half-space under transient electromechanical loads is considered. Both the permeable and impermeable boundary conditions are examined and discussed. Based on the use of integral transform techniques, the problem is reduced either to a singular integral equation for the permeable boundary condition or to two coupled singular integral equations for the impermeable boundary condition, which can be solved using Chebyshev polynomial expansions. Numerical results are provided to show the effect of the applied electric fields, the electric boundary conditions along the crack faces and a free surface on the resulting dynamic stress intensity factor and electric displacement intensity factor.


1987 ◽  
Vol 54 (3) ◽  
pp. 627-634 ◽  
Author(s):  
Huajian Gao ◽  
James R. Rice

In this paper we solve the elasticity problem of two elastic half spaces that are joined together over a region that does not differ much from a circle, i.e., the problem of an external planar crack leaving a nearly circular uncracked connection. The method we use is based on the perturbation technique developed by Rice (1985) for solving the elastic field of a crack whose front deviates slightly from some reference geometry. Quantities such as crack opening displacement and stress intensity factor are derived in detail to the first order of accuracy in the deviation of the shape of the connection from a circle. In addition, some results such as the crack face weight functions and Green’s functions for a perfectly circular connection are also discussed under various boundary conditions at infinity. The formulae derived are used to study the configurational stability problem for quasistatic growth of an external circular crack. The results, derived when the crack front is perturbed from circular in a harmonic wave form and is subjected to axisymmetric loading, suggest that a perturbation of wavenumber higher than one is configurationally stable under all boundary conditions at infinity. The perturbation with wavenumber equal to one, which corresponds to a translational shift of the geometric center of the circular connection, turns out to be configurationally stable if any rotation in the remote field is suppressed and configurationally unstable if there is no such restraint.


Author(s):  
Richard Olson ◽  
Paul Scott

The US NRC/EPRI xLPR (eXtremely Low Probability of Rupture) probabilistic pipe fracture analysis program uses deterministic modules as the foundation for the calculation of the probability of pipe leak or rupture as a consequence of active degradation mechanisms, vibration or seismic loading. The circumferential crack opening displacement module, CrCOD, estimates crack opening displacement (COD) at the inside pipe surface, at the mid-wall thickness location, and at the outside pipe surface using a combined tension/crack face pressure/bending GE/EPRI-like solution. Each module has an uncertainty beyond the uncertainty of the xLPR data inputs. This paper documents the uncertainty for CrCOD. Using 36 pipe fracture experiments, including: base metal, similar metal weld, and dissimilar metal weld experiments; bend only and pressure and bend loading; static and dynamic load histories; cracks that range from short to long, the uncertainty of the CrCOD methodology is characterized. Module uncertainty is presented in terms mean fit and standard deviation between prediction and experimental values.


Author(s):  
Richard Olson

Current methodologies for predicting the crack opening displacement (COD) of circumferentially through-wall cracked pipe do not include the effect of weld residual stresses (WRS). Even the most advanced COD prediction methodology only includes the effect of applied axial force, bending moment, and crack face pressure. For some years, it has been known that weld residual stresses do alter the COD, but there has been no convenient way to include them in a COD prediction without doing case-specific finite element analyses. This paper documents a generalized solution for including WRS effects on COD. The model uses a closed-form analytic solution to approximate the crack face rotations that the WRS would induce which, subsequently, can be added to the typical axial force-bending-crack face pressure COD solution. The methodology is described and the basic equations for the solution are presented. Following this, application to cases to evaluate the efficacy of the approach are presented which show a mixture of results ranging from amazingly good to “of questionable value” with respect to the FEA results.


Author(s):  
Kyung-Dong Bae ◽  
Chul-Goo Kim ◽  
Seung-Jae Kim ◽  
Hyun-Jae Lee ◽  
Yun-Jae Kim

This paper proposes the relationship of stress intensity factor and crack opening displacement between pipe bends with uniform thickness and those with non-uniform thickness. In actual case, pipe bends have thickness variations. Unlike typical pipe bends, heat induction bend pipes have significant thickness variations (non-uniform thickness) because of manufacturing process. When the ratio of radius of curvature and pipe radius is 3 for heat induction bend pipes, the thickness at intrados and extrados can be calculated by 1.75 times and 0.875 times of nominal thickness which is original thickness before manufacturing process, respectively. In this situation, it is difficult to apply existing elastic stress intensity factor and crack opening displacement results [1, 2] and it is essential to modify existing solution or to create new solution. In this paper, to find effect of pipe bends thickness variation, 90° through-wall cracked pipe bends with not only uniform thickness but also non-uniform thickness are considered. The ratios of radius and thickness are 5, 10 and ratios of pipe radius of curvature and radius are 3, 4 and 5. Loading condition is in-plane opening bending for intrados crack and closing bending for extrados crack. The through-wall crack sizes are 12.5%, 25% and 37.5% of circumferential cross section. Material of pipe bends is assumed to follow elastic behavior. The proposal is made by extensive finite elements analyses using ABAQUS [3], predicted elastic stress intensity factors for pipe bends with non-uniform thickness are compared with finite element results. The results show a good agreement. It may be useful to calculate elastic stress intensity factor for bends with non-uniform thickness without complex modeling and finite analyses.


2011 ◽  
Vol 462-463 ◽  
pp. 972-978
Author(s):  
Yoshihisa Sakaida ◽  
Hajime Yoshida ◽  
Shotaro Mori

Three types of polycrystalline alumina, one pressureless and two hot press sintered Al2O3, were used to examine the effects of the characteristics of microstructure and crack face bridging on fracture toughness. The crack opening displacements and microstructures along the pop-in crack of single edge precracked beam (SEPB) specimens were observed in situ at a constant applied stress intensity factor by scanning electron microscopy (SEM). The bridging stress distribution could be determined from the measured crack opening displacement by three-dimensional finite element analysis, and then the stress intensity factor and stress shielding effect at the crack tip could also be determined. Intergranular microcracks of toughened Al2O3 were deflected by a complicated microstructure, and crack closure due to bridging grains was observed near the crack tip. Bridging stress of Al2O3 was compressive perpendicular to the crack face and was distributed behind the crack tip. The maximum bridging stress of two hot press sintered Al2O3 was about twice as large as that of pressureless sintered Al2O3. The fracture toughness of hot press sintered Al2O3 was, therefore, higher than that of pressureless sintered Al2O3, because the total amount of bridging stress and stress shielding effect increased with increasing magnitude of microcrack deflection and the number of interlocking grains.


Sign in / Sign up

Export Citation Format

Share Document