An SMA cable-based negative stiffness seismic isolator: Development, experimental characterization, and numerical modeling

Author(s):  
Sasa Cao ◽  
Osman E Ozbulut ◽  
Fei Shi ◽  
Jiangdong Deng

Shape memory alloy (SMA)-based seismic isolation systems can successfully reduce the peak and residual displacements of bridges during strong earthquake, but they commonly lead to an increased force demands in substructure. This study explores the development of an SMA cable-based negative stiffness isolator to alleviate this problem. The proposed isolator is composed of superelastic SMA cables and a frictional sliding bearing with convex surfaces. The frictional sliding bearing limit the forces transferred to the superstructure and provides energy dissipation, while its built-in negative stiffness mechanism reduces the force demands in substructure. SMA cables provide critical restoring forces, additional energy dissipation, and displacement-limiting capacity. Based on the force balance, the negative stiffness and restoring requirements of the SMA cable-based negative stiffness isolator were analyzed first. Then, a prototype large-scale isolator was designed and fabricated. Next, the experimental testing of the developed isolator was performed under two different vertical load levels. Finally, finite element modeling of the proposed isolator was conducted, and the simulation results and experimental results were compared and discussed. The proposed isolator generates lower forces than the SMA-based zero and positive stiffness isolators and can exhibit stable energy dissipation capabilities with very good displacement-limiting and self-centering capabilities.

2021 ◽  
Vol 7 ◽  
Author(s):  
Hasler M ◽  
Jud W ◽  
Nachbauer W

For many years, a frictional meltwater film has been assumed to be the reason for the low friction between skis and snow, but experimental studies have been inconclusive. Therefore, the aim of our study was to find indications or evidence for the presence of frictional meltwater. The friction between snow at −4°C and an XC ski as well as a flat ski was measured on a large-scale linear snow tribometer at realistic skiing speeds from 5 to 25 m/s. We used an infrared camera to analyze the snow temperature behind the skis. From the maximum snow surface temperature, we estimated the temperature at the spots where ski and snow contacted. Assuming that the contact spot temperature does not notably exceed 0°C, we calculated the relative contact area between ski and snow. Maximum snow surface temperatures were very close to 0°C. Given that not the entire snow surface is in contact with the ski, this finding is a strong indication for snow melting. Heat flow considerations led to the conclusion that there must be energy dissipation beyond the heat flow into ski and snow. The most obvious mechanism for the additional energy dissipation is snow melting. Presuming that the contact spot temperatures are at most slightly above 0°C, we calculated relative contact areas of 21–98%. Previous research has reported much lower values; however, most studies were conducted under conditions that are not realistic for skiing.


2021 ◽  
Vol 9 (8) ◽  
pp. 831
Author(s):  
Zhuangzhuang Sun ◽  
Jie Yu ◽  
Fangping Tang

In order to study the influence of the position of the bulb on the hydraulic performance of asubmersible tubular pump device, based on a large-scale pumping station, two schemes—involving a front-mounted bulb and a rear-mounted bulb, respectively—were designed. The front-mounted scheme uses the GL-2008-03 hydraulic model and its conventional guide vane, while the rearmounted scheme uses the optimized design of a diffuser vane. The method of combining numerical simulation and experimental testing was used to analyze the differences between the external and internal characteristics of the two schemes. The results show that, under the condition of reasonable diffusion guide vane design, the efficiency under the rear-mounted scheme is higher than that under the front-mounted scheme, where the highest efficiency difference is about 1%. Although the frontmounted bulb scheme reduces the hydraulic loss of the bulb section, the placement of the bulb on the water inlet side reduces the flow conditions of the impeller. Affected by the circulation of the guide vane outlet, the hydraulic loss of the outlet channel is greater than the rear-mounted scheme. The bulb plays a rectifying function when the bulb is placed behind, which greatly eliminates the annular volume of the guide vane outlet, and the water outlet channel has a smaller hydraulic loss. In the front-mounted scheme, the water flow inside the outlet channel squeezes to the outer wall, causing higher entropy production near the outer wall area. The entropy production of the rear-mounted scheme is mainly in the bulb section and the bulb support. This research can provide reference for the design and form selection of a submersible tubular pump device, which has great engineering significance.


Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for seismic protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A highly-adjustable MRE base isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MRE layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive base isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. Experimental results show that the prototypical MRE base isolator provides amazing increase of lateral stiffness up to 1630%. Such range of increase of the controllable stiffness of the base isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls. To facilitate the structural control development using the adaptive MRE base isolator, an analytical model was developed to stimulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator, including the observed strain stiffening effect.


Author(s):  
V. Solovej ◽  
K. Gorbunov ◽  
V. Vereshchak ◽  
O. Gorbunova

A study has been mode of transport-controlled mass transfer-controlled to particles suspended in a stirred vessel. The motion of particle in a fluid was examined and a method of predicting relative velocities in terms of Kolmogoroff’s theory of local isotropic turbulence for mass transfer was outlined. To provide a more concrete visualization of complex wave form of turbulence, the concepts of eddies, of eddy velocity, scale (or wave number) and energy spectrum, have proved convenient. Large scale motions of scale contain almost all of the energy and they are directly responsible for energy diffusion throughout the stirring vessel by kinetic and pressure energies. However, almost no energy is dissipated by the large-scale energy-containing eddies. A scale of motion less than is responsible for convective energy transfer to even smaller eddy sires. At still smaller eddy scales, close to a characteristic microscale, both viscous energy dissipation and convection are the rule. The last range of eddies has been termed the universal equilibrium range. It has been further divided into a low eddy size region, the viscous dissipation subrange, and a larger eddy size region, the inertial convection subrange. Measurements of energy spectrum in mixing vessel are shown that there is a range, where the so called -(5/3) power law is effective. Accordingly, the theory of local isotropy of Kolmogoroff can be applied because existence of the internal subrange. As the integrated value of local energy dissipation rate agrees with the power per unit mass of liquid from the impeller, almost all energy from the impeller is viscous dissipated in eddies of microscale. The correlation for mass transfer to particles suspended in a stirred vessel is recommended. The results of experimental study are approximately 12 % above the predicted values.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nicola Caterino ◽  
Mariacristina Spizzuoco ◽  
Julian M. Londoño ◽  
Antonio Occhiuzzi

This work focuses on the issues to deal with when approaching experimental testing of structures equipped with semiactive control (SA) systems. It starts from practical experience authors gained in a recent wide campaign on a large scale steel frame structure provided with a control system based on magnetorheological dampers. The latter are special devices able to achieve a wide range of physical behaviours using low-power electrical currents. Experimental activities involving the use of controllable devices require special attention in solving specific aspects that characterize each of the three phases of the SA control loop: acquisition, processing, and command. Most of them are uncommon to any other type of structural testing. This paper emphasizes the importance of the experimental assessment of SA systems and shows how many problematic issues likely to happen in real applications are also present when testing these systems experimentally. This paper highlights several problematic aspects and illustrates how they can be addressed in order to achieve a more realistic evaluation of the effectiveness of SA control solutions. Undesired and unavoidable effects like delays and control malfunction are also remarked. A discussion on the way to reduce their incidence is also offered.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850013
Author(s):  
Sri Harsha Kondapalli ◽  
Xuan Zhang ◽  
Shantanu chakrabartty

Variance-based logic (VBL) uses the fluctuations or the variance in the state of a particle or a physical quantity to represent different logic levels. In this paper, we show that compared to the traditional bi-stable logic representation, the variance-based representation can theoretically achieve a superior performance trade-off (in terms of energy dissipation and information capacity) when operating at fundamental limits imposed by thermal noise. We show that, in addition to the universal KT ln(1/[Formula: see text]) energy dissipation required for a single bit flip, a bi-stable logic device needs to dissipate at least 4.35[Formula: see text]KT/bit of energy, whereas under similar operating conditions, a VBL device reduces the additional energy dissipation requirements down to sub-KT/bit. These theoretical results are generally enough to be applicable to different instantiations and variants of VBL ranging from digital processors based on energy-scavenging or to processors based on the emerging valleytronic devices.


2018 ◽  
Vol 256 (1) ◽  
pp. 1800003 ◽  
Author(s):  
Iuliia Karachevtseva ◽  
Elena Pasternak ◽  
Arcady V. Dyskin

Sign in / Sign up

Export Citation Format

Share Document