scholarly journals Creep crack simulations using continuum damage mechanics and extended finite element method

2017 ◽  
Vol 28 (1) ◽  
pp. 3-34 ◽  
Author(s):  
VB Pandey ◽  
I V Singh ◽  
BK Mishra ◽  
S Ahmad ◽  
AV Rao ◽  
...  

In the present work, elasto-plastic creep crack growth simulations are performed using continuum damage mechanics and extended finite element method. Liu–Murakami creep damage model and explicit time integration scheme are used to evaluate the creep strain and damage variable for various materials at different temperatures. Compact tension and C-shaped tension specimens are selected for the simulation of crack growth analysis. For damage evaluation, both local and nonlocal approaches are employed. The accuracy of the extended finite element method solutions is checked by comparing with experimental results and finite element solutions. These results show that the extended finite element method requires a much coarser mesh to effectively model crack propagation. It is also shown that mesh independent results can be achieved by using nonlocal implementation.

2012 ◽  
Vol 588-589 ◽  
pp. 1926-1929
Author(s):  
Yu Zhou Sima ◽  
Fu Zhou Wang

An extended finite element method (XFEM) for multiple crack growth in asphalt pavement is described. A discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modeled by finite element with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Finally, the propagation path of the cracks in asphalt pavement under different load conditions is presented.


Sign in / Sign up

Export Citation Format

Share Document