scholarly journals A tale of two densities: active inference is enactive inference

2019 ◽  
Vol 28 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Maxwell JD Ramstead ◽  
Michael D Kirchhoff ◽  
Karl J Friston

The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) – and its corollary, active inference – in theoretical neuroscience and biology: namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain – variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models: a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference – what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control – the self-organising, belief-guided selection of action policies – and do not have the properties ascribed by structural representationalists.

2019 ◽  
Author(s):  
Dimitris Bolis ◽  
Leonhard Schilbach

Thinking Through Other Minds (TTOM) creatively situates the free energy principle within real-life cultural processes, thereby enriching both sociocultural theories and Bayesian accounts of cognition. Here, shifting the attention from thinking to becoming, we suggest complementing such an account by focusing on the empirical, computational and conceptual investigation of the multiscale dynamics of social interaction.


2020 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic model that attempts to unify theories of consciousness within the Free Energy Principle and Active Inference framework, with particular emphasis on Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further suggests predictive processing in sensory hierarchies may be well-modeled as (folded, sparse, partially disentangled) variational autoencoders, with beliefs discretely-updated via the formation of synchronous complexes—as self-organizing harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP) estimation via turbo coding. In this account, alpha-synchronized SOHMs across posterior cortices may constitute the kinds of maximal complexes described by IIT, as well as samples (or MAP estimates) from multimodal shared latent space, organized according to egocentric reference frames, entailing phenomenal consciousness as mid-level perceptual inference. When these posterior SOHMs couple with frontal complexes, this may enable various forms of conscious access as a kind of mental act(ive inference), affording higher order cognition/control, including the kinds of attentional/intentional processing and reportability described by GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be organized into spatiotemporal trajectories by the entorhinal/hippocampal system, so affording episodic memory, counterfactual imaginings, and planning.


2019 ◽  
Author(s):  
Beren Millidge

This paper combines the active inference formulation of action (Friston, 2009) with hierarchical predictive coding models (Friston, 2003) to provide a proof-of-concept implementation of an active inference agent able to solve a common reinforcement learning baseline -- the cart-pole environment in OpenAI gym. It demonstrates empirically that predictive coding and active inference approaches can be successfully scaled up to tasks more challenging than the mountain car (Friston 2009, 2012). We show that hierarchical predictive coding models can be learned from scratch during the task, and can successfully drive action selection via active inference. To our knowledge, it is the first implemented active inference agent to combine active inference with a hierarchical predictive coding perceptual model. We also provide a tutorial walk-through of the free-energy principle, hierarchical predictive coding, and active inference, including an in-depth derivation of our agent.


2020 ◽  
Author(s):  
Adam Safron

In introducing a model of “relaxed beliefs under psychedelics” (REBUS), Carhart-Harris and Friston (2019) have presented a compelling account of the effects of psychedelics on brain and mind. This model is contextualized within the Free Energy Principle (Friston et al., 2006; Friston, 2010), which may represent the first unified paradigm in the mind and life sciences. By this view, mental systems adaptively regulate their actions and interactions with the world via predictive models, whose dynamics are governed by a singular objective of minimizing prediction-error, or “free energy.” According to REBUS, psychedelics flatten the depth of free energy landscapes, or the differential attracting forces associated with various (Bayesian) beliefs, so promoting flexibility in inference and learning. Here, I would like to propose an alternative account of the effects of psychedelics that is in many ways compatible with REBUS, albeit with some important differences. Based on considerations of the distributions of 5-HT2a receptors within cortical laminae and canonical microcircuits for predictive coding, I propose that 5-HT2a agonism may also involve a strengthening of beliefs, particularly at intermediate levels of abstraction associated with conscious experience (Safron, 2020).


2020 ◽  
Vol 43 ◽  
Author(s):  
Dimitris Bolis ◽  
Leonhard Schilbach

Abstract Thinking through other minds creatively situates the free-energy principle within real-life cultural processes, thereby enriching both sociocultural theories and Bayesian accounts of cognition. Here, shifting the attention from thinking-through to becoming-with, we suggest complementing such an account by focusing on the empirical, computational, and conceptual investigation of the multiscale dynamics of social interaction.


2021 ◽  
Author(s):  
Ryan Smith ◽  
maxwell ramstead ◽  
Alex Kiefer

Active inference offers a unified theory of perception, learning, and decision-making at computational and neural levels of description. In this article, we address the worry that active inference may be in tension with folk psychology because it does not include terms for desires (or other conative constructs) at the mathematical level of description. To resolve this concern, we first provide a brief review of the historical progression from predictive coding to active inference, enabling us to distinguish between active inference formulations of motor control (which need not have desires under folk psychology) and active inference formulations of decision processes (which do have desires within folk psychology). We then show that, despite a superficial tension when viewed at the mathematical level, the active inference formalism contains terms that are readily identifiable as encoding both the objects of desire and the strength of desire at the psychological level. We demonstrate this with simple simulations of an active inference agent motivated to leave a dark room for different reasons. Despite their consistency, we further show how active inference may increase the granularity of folk-psychological descriptions by highlighting distinctions between drives to seek information vs. reward – and how it may also offer more precise, quantitative folk-psychological predictions. Finally, we consider how the implicitly conative components of active inference may have partial analogues (i.e., “as if” desires) in other systems describable by the broader free energy principle to which it conforms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Georg Northoff ◽  
Andrea Scalabrini

What kind of neuroscience does psychoanalysis require? At his time, Freud in his “Project for a Scientific Psychology” searched for a model of the brain that could relate to incorporate the psyche’s topography and dynamic. Current neuropsychoanalysis builds on specific functions as investigated in Affective and Cognitive (and Social) Neuroscience including embodied approaches. The brain’s various functions are often converged with prediction as operationalized in predictive coding (PC) and free energy principle (FEP) which, recently, have been conceived as core for a “New Project for Scientific Psychology.” We propose to search for a yet more comprehensive and holistic neuroscience that focuses primarily on its topography and dynamic analogous to Freud’s model of the psyche. This leads us to what we describe as “Spatiotemporal Neuroscience” that focuses on the spatial topography and temporal dynamic of the brain’s neural activity including how they shape affective, cognitive, and social functions including PC and FEP (first part). That is illustrated by the temporally and spatially nested neural hierarchy of the self in the brain’s neural activity (second and third part). This sets the ground for developing our proposed “Project for a Spatiotemporal Neuroscience,” which complements and extends both Freud’s and Solms’ projects (fourth part) and also carries major practical implications as it lays the ground for a novel form of neuroscientifically informed psychotherapy, namely, “Spatiotemporal Psychotherapy.” In conclusion, “Spatiotemporal Neuroscience” provides an intimate link of brain and psyche by showing topography and dynamic as their shared features, that is, “common currency.”


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Wiktor Rorot

Abstract The goal of the paper is to review existing work on consciousness within the frameworks of Predictive Processing, Active Inference, and Free Energy Principle. The emphasis is put on the role played by the precision and complexity of the internal generative model. In the light of those proposals, these two properties appear to be the minimal necessary components for the emergence of conscious experience—a Minimal Unifying Model of consciousness.


2017 ◽  
Vol 14 (131) ◽  
pp. 20170096 ◽  
Author(s):  
Paco Calvo ◽  
Karl Friston

In this article we account for the way plants respond to salient features of their environment under the free-energy principle for biological systems. Biological self-organization amounts to the minimization of surprise over time. We posit that any self-organizing system must embody a generative model whose predictions ensure that (expected) free energy is minimized through action. Plants respond in a fast, and yet coordinated manner, to environmental contingencies. They pro-actively sample their local environment to elicit information with an adaptive value. Our main thesis is that plant behaviour takes place by way of a process (active inference) that predicts the environmental sources of sensory stimulation. This principle, we argue, endows plants with a form of perception that underwrites purposeful, anticipatory behaviour. The aim of the article is to assess the prospects of a radical predictive processing story that would follow naturally from the free-energy principle for biological systems; an approach that may ultimately bear upon our understanding of life and cognition more broadly.


Author(s):  
Giovanni Pezzulo ◽  
Thomas Parr ◽  
Karl Friston

This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors—and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising—about predictive processing—with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Sign in / Sign up

Export Citation Format

Share Document