Control effect on deep cavity noise by slanted walls at low Mach numbers
Experimental and numerical studies on noise radiated by flow past a rectangular two-dimensional deep cavity with passive control are conducted to research the mechanism of cavity noise reduction at low Mach numbers. The clean cavity has a depth-to-length ratio of 1.5 and a width-to-length ratio of 3. The passive control method is used by slanting the front and rear walls. Using acoustic microphones, both the surface noise and far-field noise are tested in an aeroacoustic wind tunnel. It is observed that the slanted rear wall can suppress the noise effectively, but for the slanted front wall, the tones will be enhanced at some velocities. Numerical simulation is conducted to reveal the mechanism. The results reveal that the slanted rear wall can reflect the unsteadiness back to the shear layer and break up the vortices in it. These vortexes will diffuse after impacting the rear wall and prevent the perturbation from moving deeper, which brings a stable flow field into the cavity. As for the slanted front wall, the vortices will be enlarged and become accelerated in the shear layer, which makes the impingement of it to the rear wall more intense, thus leading to an increase in the noise level.