Hygro-thermo-mechanical vibration of two vertically aligned single-walled boron nitride nanotubes conveying fluid

2021 ◽  
pp. 107754632110065
Author(s):  
Yalda Zarabimanesh ◽  
Pouyan Roodgar Saffari ◽  
Peyman Roudgar Saffari ◽  
Nima Refahati

The nonlocal strain gradient theory, when combined with the first-order shear deformation theory, provides many capabilities in size-dependent structures. The aim of the present study is evaluation of the free vibration behavior of two vertically aligned fluid-conveying single-walled boron nitride nanotubes in hygrothermal environments considering slip boundary condition based on Knudsen number. These two adjacent nanotubes are coupled in the context of linear deformation through van der Waals interaction according to Lennard–Jones potential function. Actually, the contribution of the present work, compared with those previously reported, is investigating the simultaneous effect of hygrothermal loading and slip boundary condition on the dynamic behavior of two vertically aligned fluid-conveying single-walled boron nitride nanotubes. As an additional step to achieve a more accurate model of low-scale structures, both hardening and softening effects of materials are taken as important variables in the nonlocal strain gradient approach. To derive the motion equations and associated boundary conditions, Hamilton’s variational principle is used. The equations are then solved with the aid of differential quadrature method. Numerical studies are also performed to depict the effects of a number of parameters such as boundary conditions, size scale, aspect ratio, inter-tube distance, and temperature alteration on the variations of dimensionless eigenfrequency and critical flow velocity.

2005 ◽  
Vol 15 (03) ◽  
pp. 343-374 ◽  
Author(s):  
GUY BAYADA ◽  
NADIA BENHABOUCHA ◽  
MICHÈLE CHAMBAT

A thin micropolar fluid with new boundary conditions at the fluid-solid interface, linking the velocity and the microrotation by introducing a so-called "boundary viscosity" is presented. The existence and uniqueness of the solution is proved and, by way of asymptotic analysis, a generalized micropolar Reynolds equation is derived. Numerical results show the influence of the new boundary conditions for the load and the friction coefficient. Comparisons are made with other works retaining a no slip boundary condition.


2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Anthony J. Gannon ◽  
Garth V. Hobson ◽  
Michael J. Shea ◽  
Christopher S. Clay ◽  
Knox T. Millsaps

This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450060 ◽  
Author(s):  
ALI GHORBANPOUR ARANI ◽  
ABDOLREZA JALILVAND ◽  
REZA KOLAHCHI

Nonlinear vibration and instability of a boron nitride micro-tube (BNMT) conveying ferrofluid under the combined magnetic and electric fields are investigated. Based on Euler–Bernoulli beam (EBB), piezoelasticity strain gradient theory and Hamilton's principle, high order equations of motion are derived for three boundary conditions namely as clamped–clamped (C–C), simply–simply (S–S) and clamped–simply (C–S). The differential quadrature method (DQM) is applied to discretize the motion equations in order to obtain the nonlinear frequency and critical fluid velocity using a direct iterative method. A detailed parametric study is conducted to elucidate the influences of the various boundary conditions, size diameter and magnetic field on vibrational characteristic of BNMT. Numerical results indicate that the effect of magnetic field appears in higher speed of ferrofluid and increases the critical velocity or enlarges the stability region. The results are in good agreement with the previous researches. The results of this study can be used to manufacture smart micro/nano electromechanical systems in advanced biomechanics applications with magnetic and electric fields as parametric controllers.


Sign in / Sign up

Export Citation Format

Share Document