Serum neurofilament light chain level associations with clinical and cognitive performance in multiple sclerosis: A longitudinal retrospective 5-year study

2019 ◽  
Vol 26 (13) ◽  
pp. 1670-1681 ◽  
Author(s):  
Dejan Jakimovski ◽  
Robert Zivadinov ◽  
Murali Ramanthan ◽  
Jesper Hagemeier ◽  
Bianca Weinstock-Guttman ◽  
...  

Background: A limited number of studies investigated associations between serum neurofilament light chain (sNfL) and cognition in persons with multiple sclerosis (PwMS). Objective: To assess cross-sectional and longitudinal associations between sNfL levels, clinical, and cognitive performance in PwMS and age-matched healthy controls (HCs). Materials: One hundred twenty-seven PwMS (85 relapsing–remitting MS/42 progressive MS), 20 clinically isolated syndrome patients, and 52 HCs were followed for 5 years. sNfL levels were measured using the single-molecule array (Simoa) assay and quantified in picograms per milliliter. Expanded Disability Status Scale (EDSS), walking, and manual dexterity tests were obtained. At follow-up, Brief International Cognitive Assessment for MS (BICAMS) was utilized. Cognitively impaired (CI) status was derived using HC-based z-scores. Age-, sex-, and education-adjusted analysis of covariance (ANCOVA) and regression models were used. Multiple comparison–adjusted values of q < 0.05 were considered significant. Results: In PwMS, sNfL levels were cross-sectionally associated with walking speed ( r = 0.235, q = 0.036), manual dexterity ( r = 0.337, q = 0.002), and cognitive processing speed (CPS; r =−0.265, q = 0.012). Baseline sNfL levels predicted 5-year EDSS scores ( r = 0.25, q = 0.012), dexterity ( r = 0.224, q = 0.033), and CPS ( r =−0.205, q = 0.049). CI patients had higher sNfL levels (27.2 vs. 20.6, p = 0.016) and greater absolute longitudinal sNfL increase when compared with non-CI patients (4.8 vs. 0.7, p = 0.04). Conclusion: Higher sNfL levels are associated with poorer current and future clinical and cognitive performance.

2020 ◽  
Vol 7 (4) ◽  
pp. e749 ◽  
Author(s):  
Marie-Christine Reinert ◽  
Pascal Benkert ◽  
Jens Wuerfel ◽  
Zuzanna Michalak ◽  
Esther Ruberte ◽  
...  

ObjectiveTo investigate serum neurofilament light chain (sNfL) as a potential biomarker for disease activity and treatment response in pediatric patients with multiple sclerosis (MS).MethodsIn this retrospective cohort study, sNfL levels were measured in a pediatric MS cohort (n = 55, follow-up 12–105 months) and in a non-neurologic pediatric control cohort (n = 301) using a high-sensitivity single-molecule array assay. Association of sNfL levels and treatment and clinical and MRI parameters were calculated.ResultsUntreated patients had higher sNfL levels than controls (median 19.0 vs 4.6 pg/mL; CI [4.732, 6.911]), p < 0.001). sNfL levels were significantly associated with MRI activity (+9.1% per contrast-enhancing lesion, CI [1.045, 1.138], p < 0.001; +0.6% per T2-weighted lesion, CI [1.001, 1.010], p = 0.015). Higher values were associated with a relapse <90 days ago (+51.1%; CI [1.184, 1.929], p < 0.001) and a higher Expanded Disability Status Scale score (CI [1.001, 1.240], p = 0.048). In patients treated with interferon beta-1a/b (n = 27), sNfL levels declined from 14.7 to 7.9 pg/mL after 6 ± 2 months (CI [0.339, 0.603], p < 0.001). Patients with insufficient control of clinical or MRI disease activity under treatment with interferon beta-1a/b or glatiramer acetate who switched to fingolimod (n = 18) showed a reduction of sNfL levels from 16.5 to 10.0 pg/mL 6 ± 2 months after switch (CI [0.481, 0.701], p < 0.001).ConclusionssNfL is a useful biomarker for monitoring disease activity and treatment response in pediatric MS. It is most likely helpful to predict disease severity and to guide treatment decisions in patients with pediatric MS. This study provides Class III evidence that sNfL levels are associated with disease activity in pediatric MS.


2018 ◽  
Vol 25 (5) ◽  
pp. 678-686 ◽  
Author(s):  
Nelly Siller ◽  
Jens Kuhle ◽  
Muthuraman Muthuraman ◽  
Christian Barro ◽  
Timo Uphaus ◽  
...  

Background: Monitoring neuronal injury remains one key challenge in early relapsing-remitting multiple sclerosis (RRMS) patients. Upon axonal damage, neurofilament – a major component of the neuro-axonal cytoskeleton – is released into the cerebrospinal fluid (CSF) and subsequently peripheral blood. Objective: To investigate the relevance of serum neurofilament light chain (sNfL) for acute and chronic axonal damage in early RRMS. Methods: sNfL levels were determined in 74 patients (63 therapy-naive) with recently diagnosed clinically isolated syndrome (CIS) or RRMS using Single Molecule Array technology. Standardized 3 T magnetic resonance imaging (MRI) was performed at baseline and 1–3 consecutive follow-ups (42 patients; range: 6–37 months). Results: Baseline sNfL correlated significantly with T2 lesion volume ( r = 0.555, p < 0.0001). There was no correlation between baseline sNfL and age, Expanded Disability Status Scale (EDSS) score or other calculated MRI measures. However, T2 lesion volume increased ( r = 0.67, p < 0.0001) and brain parenchymal volume decreased more rapidly in patients with higher baseline sNfL ( r = −0.623, p = 0.0004). Gd-enhancing lesions correlated positively with sNfL levels. Initiation of disease-modifying treatment led to a significant decrease in sNfL levels. Conclusion: sNfL indicates acute inflammation as demonstrated by correlation with Gd+ lesions. It is a promising biomarker for neuro-axonal damage in early multiple sclerosis (MS) patients, since higher baseline sNfL levels predicted future brain atrophy within 2 years.


2021 ◽  
Vol 14 ◽  
pp. 175628642110019
Author(s):  
Sinah Engel ◽  
Maria Protopapa ◽  
Falk Steffen ◽  
Vakis Papanastasiou ◽  
Christoforos Nicolaou ◽  
...  

Background: Serum neurofilament light chain (sNfL) is a promising biomarker to complement the decision-making process in multiple sclerosis (MS) patients. However, although sNfL levels are able to detect disease activity and to predict future disability, the growing evidence has not yet been translated into practicable recommendations for an implementation into clinical routine. Methods: The observation of a patient with extensive inflammatory activity in magnetic resonance imaging (MRI) along with an extremely high sNfL level in the absence of any clinical symptoms prompted us to investigate common characteristics of our MS patients with the highest sNfL levels in a retrospective cohort study. The 97.5th percentile was chosen as a cut-off value because the mean sNfL level of the resulting extreme neurofilament light chain (NfL) cohort corresponded well to the sNfL level of the presented case. Patient characterization included clinical and MRI assessment with a focus on disease activity markers. sNfL levels were determined by single molecule array. Results: The 97.5th percentile of our MS cohort (958 sNfL measurements in 455 patients) corresponded to a threshold value of 46.1 pg/ml. The mean sNfL level of the extreme sNfL cohort ( n = 24) was 95.6 pg/ml (standard deviation 68.4). Interestingly, only 15 patients suffered from a relapse at the time point of sample collection, whereas nine patients showed no signs of clinical disease activity. sNfL levels of patients with and without relapse did not differ [median 81.3 pg/ml (interquartile range [IQR] 48.0–128) versus 80.2 pg/ml (IQR 46.4–97.6), p = 0.815]. The proportion of patients with contrast-enhancing lesions was high and also did not differ between patients with and without relapse (92.9% versus 87.5%, p = 0.538); 78.9% of the patients not receiving a high-efficacious therapy had ongoing disease activity during a 2-year follow-up. Conclusion: Extremely high sNfL levels are indicative of subclinical disease activity and might complement treatment decisions in ambiguous cases.


2021 ◽  
Vol 9 (1) ◽  
pp. e1102
Author(s):  
Markus Bock ◽  
Falk Steffen ◽  
Frauke Zipp ◽  
Stefan Bittner

Background and ObjectivesAdapted ketogenic diet (AKD) and caloric restriction (CR) have been suggested as alternative therapeutic strategies for multiple sclerosis (MS), but information on their impact on neuroaxonal damage is lacking. Thus, we explored the impact of diets on serum neurofilament light chain (sNfL) levels in patients with relapsing-remitting MS.MethodsWe retrospectively evaluated a prospective randomized controlled trial of 60 patients with MS who were on a common diet or ketogenic diet or fasting. We examined sNfL levels of 40 participants at baseline and at the end of the study after 6 months using single molecule array assay.ResultssNfL levels were investigated in 9 controls, 14 participants on CR, and 17 participants on AKD. Correlation analysis showed an association of sNfL with age and disease duration; an association was also found between sNfL and the Multiple Sclerosis Functional Composite. AKD significantly reduced sNfL levels at 6 months compared with the common diet group (p = 0.001).DiscussionFor clinical or study use, consider that AKD may incline sNfL levels independent of relapse activity up to 3 months after initiation. At 6 months, AKD, which complements current therapies, reduced sNfL levels, therefore suggesting potential neuroprotective effects in MS. A single cycle of seven-day fasting did not affect sNfL. AKD may be an addition to the armamentarium to help clinicians support patients with MS in a personalized manner with tailored diet strategies.Trial Registration InformationClinical trial registration number NCT01538355.


2019 ◽  
Vol 26 (6) ◽  
pp. 659-667 ◽  
Author(s):  
Jae-Won Hyun ◽  
Yeseul Kim ◽  
Gayoung Kim ◽  
Su-Hyun Kim ◽  
Ho Jin Kim

Objectives: Serum neurofilament light chain (sNfL) has been proposed a potential biomarker in multiple sclerosis (MS) based on mainly cross-sectional observations in Western population. To clarify clinical implication of sNfL, we longitudinally analysed sNfL levels at multiple time points in Korean MS patients undergoing alemtuzumab therapy. Methods: Between 2016 and 2018, 144 sera from 17 MS patients treated with alemtuzumab at National Cancer Centre and 35 sera from 35 age- and gender-matched healthy controls (HCs) were collected for a longitudinal study with a mean 21-month follow-up. The sera were measured for sNfL levels using single molecule array. Patients were classified into two groups: evidence of disease activity (EDA) or no evidence of disease activity (NEDA). Results: During alemtuzumab therapy, sNfL levels in EDA patients were significantly higher than those in NEDA patients and HCs ( p < 0.001). In longitudinal analysis, the sNfL levels were consistently low in NEDA patients, while it consistently increased in radiologically and/or clinically active status in EDA patients. All sNfL levels in radiologically and/or clinically active status samples were higher than those in inactive status samples. Conclusion: These results suggest that sNfL is a promising monitoring biomarker for personalized therapeutics in MS patients.


2020 ◽  
Vol 6 (3) ◽  
pp. 205521732093631
Author(s):  
Katrin Pape ◽  
Falk Steffen ◽  
Frauke Zipp ◽  
Stefan Bittner

Background As vitamins and dietary supplements are obtainable without prescription, treating physicians often ignore their intake by patients with multiple sclerosis (MS) and may therefore miss potential adverse effects and interactions. Objective We aimed to assess the spectrum and intake frequency of supplementary medication in a cohort of MS patients and to analyse the effect of biotin intake on measurement of serum neurofilament light chain (sNfL), an emerging marker of disease activity. Methods MS patients visiting our neurology outpatient clinic completed a questionnaire on their past or present use of vitamins or dietary supplements. In addition, the impact of two different doses of biotin (10 and 300 mg/day) on sNfL was studied in healthy volunteers. Results Of 186 patients, 72.6% reported taking over-the-counter vitamins or dietary supplements currently or previously. Most frequently used was vitamin D (60.0%), followed by biotin. Female patients and patients with primary progressive MS tended to use supplements more frequently. Biotin intake did not interfere with sNfL measurement by single molecule array (Simoa). Conclusions The use of vitamins and dietary supplements is frequent among patients with MS. Thus, treating physicians should be aware of the pitfalls of supplementary treatment and educate their patients accordingly.


Author(s):  
Tobias Geis ◽  
◽  
Susanne Brandstetter ◽  
Antoaneta A. Toncheva ◽  
Otto Laub ◽  
...  

Abstract Background Serum neurofilament light chain (sNfL) is an established biomarker of neuro-axonal damage in multiple neurological disorders. Raised sNfL levels have been reported in adults infected with pandemic coronavirus disease 2019 (COVID-19). Levels in children infected with COVID-19 have not as yet been reported. Objective To evaluate whether sNfL is elevated in children contracting COVID-19. Methods Between May 22 and July 22, 2020, a network of outpatient pediatricians in Bavaria, Germany, the Coronavirus antibody screening in children from Bavaria study network (CoKiBa), recruited healthy children into a cross-sectional study from two sources: an ongoing prevention program for 1–14 years, and referrals of 1–17 years consulting a pediatrician for possible infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined sNfL levels by single molecule array immunoassay and SARS-CoV-2 antibody status by two independent quantitative methods. Results Of the 2652 included children, 148 (5.6%) were SARS-CoV-2 antibody positive with asymptomatic to moderate COVID-19 infection. Neurological symptoms—headache, dizziness, muscle aches, or loss of smell and taste—were present in 47/148 cases (31.8%). Mean sNfL levels were 5.5 pg/ml (SD 2.9) in the total cohort, 5.1 (SD 2.1) pg/ml in the children with SARS-CoV-2 antibodies, and 5.5 (SD 3.0) pg/ml in those without. Multivariate regression analysis revealed age—but neither antibody status, antibody levels, nor clinical severity—as an independent predictor of sNfL. Follow-up of children with pediatric multisystem inflammatory syndrome (n = 14) showed no association with sNfL. Conclusions In this population study, children with asymptomatic to moderate COVID-19 showed no neurochemical evidence of neuronal damage.


2021 ◽  
pp. jnnp-2021-326914
Author(s):  
Dario Saracino ◽  
Karim Dorgham ◽  
Agnès Camuzat ◽  
Daisy Rinaldi ◽  
Armelle Rametti-Lacroux ◽  
...  

ObjectiveNeurofilament light chain (NfL) is a promising biomarker in genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We evaluated plasma neurofilament light chain (pNfL) levels in controls, and their longitudinal trajectories in C9orf72 and GRN cohorts from presymptomatic to clinical stages.MethodsWe analysed pNfL using Single Molecule Array (SiMoA) in 668 samples (352 baseline and 316 follow-up) of C9orf72 and GRN patients, presymptomatic carriers (PS) and controls aged between 21 and 83. They were longitudinally evaluated over a period of >2 years, during which four PS became prodromal/symptomatic. Associations between pNfL and clinical–genetic variables, and longitudinal NfL changes, were investigated using generalised and linear mixed-effects models. Optimal cut-offs were determined using the Youden Index.ResultspNfL levels increased with age in controls, from ~5 to~18 pg/mL (p<0.0001), progressing over time (mean annualised rate of change (ARC): +3.9%/year, p<0.0001). Patients displayed higher levels and greater longitudinal progression (ARC: +26.7%, p<0.0001), with gene-specific trajectories. GRN patients had higher levels than C9orf72 (86.21 vs 39.49 pg/mL, p=0.014), and greater progression rates (ARC:+29.3% vs +24.7%; p=0.016). In C9orf72 patients, levels were associated with the phenotype (ALS: 71.76 pg/mL, FTD: 37.16, psychiatric: 15.3; p=0.003) and remarkably lower in slowly progressive patients (24.11, ARC: +2.5%; p=0.05). Mean ARC was +3.2% in PS and +7.3% in prodromal carriers. We proposed gene-specific cut-offs differentiating patients from controls by decades.ConclusionsThis study highlights the importance of gene-specific and age-specific references for clinical and therapeutic trials in genetic FTD/ALS. It supports the usefulness of repeating pNfL measurements and considering ARC as a prognostic marker of disease progression.Trial registration numbersNCT02590276 and NCT04014673.


Sign in / Sign up

Export Citation Format

Share Document