Development and feasibility testing of an online virtual reality platform for delivering therapeutic group singing interventions for people living with spinal cord injury

2019 ◽  
Vol 26 (6) ◽  
pp. 365-375 ◽  
Author(s):  
Jeanette Tamplin ◽  
Ben Loveridge ◽  
Ken Clarke ◽  
Yunhan Li ◽  
David J Berlowitz

People with quadriplegia have a high risk for respiratory illness, social isolation and depression. Previous research has demonstrated that therapeutic singing interventions can not only improve breathing function and speech loudness, but also improve mood and social connectedness for people with quadriplegia. Face-to-face group attendance is difficult for this population due to difficulties with distance and travel. Online environments offer an accessible and cost-effective solution for people to connect with others without leaving their home. In a two-phase iterative design, we explored and tested different approaches for delivering online music therapy sessions with 12 patients from an inpatient spinal cord injury rehabilitation service. Six participants in Phase 1 trialled different virtual reality headsets and completed a short interview about their experience of the equipment and online singing trials. Outcomes from Phase 1 testing led to the development of a custom-built virtual reality application for online group music therapy sessions with low-latency audio. We tested the acceptability and feasibility of this platform in comparison to face-to-face and teleconference options for music therapy with six different patients. These participants completed three validated questionnaires: System Usability Scale, Quebec User Evaluation of Satisfaction with assistive Technology, and Psychosocial Impact of Assistive Devices Scale, and an interview about their experience. Questionnaire scores were good with mean ratings of 4.4 for Quebec User Evaluation of Satisfaction with assistive Technology, 53 for System Usability Scale and positive mean Psychosocial Impact of Assistive Devices Scale scores of 1.5 for competence, 2 for adaptability and 1.5 for self-esteem. Thematic analysis of post-session qualitative interviews revealed five themes: virtual reality was a positive experience, virtual reality was immersive and transportative, virtual reality reduced inhibitions about singing in front of others, virtual reality may reduce social cues, and the virtual reality equipment was comfortable, accessible and easy to use. Telehealth options, including a custom-designed virtual reality program, with low-latency audio are an acceptable and feasible mode of delivery for therapeutic singing interventions for people with spinal cord injury. Future non-inferiority research is needed to test online delivery modes for music therapy in comparison to face-to-face treatment.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosanne B. van Dijsseldonk ◽  
Ilse J. W. van Nes ◽  
Alexander C. H. Geurts ◽  
Noël L. W. Keijsers

Abstract A consequence of a complete spinal cord injury (SCI) is the loss of gait capacity. Wearable exoskeletons for the lower extremity enable household and community ambulation in people with SCI. This study assessed the amount, purpose, and location of exoskeleton use in the home and community environment, without any restrictions. The number of steps taken was read from the exoskeleton software. Participants kept a daily logbook, and completed two user experience questionnaires (Quebec User Evaluation of Satisfaction with assistive Technology (D-QUEST) and System Usability Scale (SUS)). Fourteen people with a complete SCI used the ReWalk exoskeleton a median of 9 (range [1–15]) out of 16 ([12–21]) days, in which participants took a median of 3,226 ([330–28,882]) steps. The exoskeleton was mostly used for exercise purposes (74%) and social interaction (20%). The main location of use was outdoors (48%). Overall, participants were satisfied with the exoskeleton (D-QUEST 3.7 ± 0.4) and its usability (SUS 72.5 [52.5–95.0]). Participants with complete SCI report satisfaction with the exoskeleton for exercise and social interaction in the home and community, but report limitations as an assistive device during daily life.


BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e044152
Author(s):  
Mokgadi Kholofelo Mashola ◽  
Elzette Korkie ◽  
Diphale Joyce Mothabeng

IntroductionApproximately 80% of people with spinal cord injury experience clinically significant chronic pain. Pain (whether musculoskeletal or neuropathic) is consistently rated as one of the most difficult problems to manage and negatively affects the individual’s physical, psychological and social functioning and increases the risk of pain medication misuse and poor mental health. The aim of this study is to therefore determine the presence of pain and its impact on functioning and disability as well as to develop a framework for self-management of pain for South African manual wheelchair users with spinal cord injury.Methods and analysisCommunity-dwelling participants with spinal cord injury will be invited to participate in this three-phase study. Phase 1 will use a quantitative, correlational design to determine factors related to pain such as pectoralis minor length, scapular dyskinesis, wheelchair functioning, physical quality of life, community reintegration and pain medication misuse. Demographic determinants of pain such as age, gender, type of occupation, completeness of injury and neurological level of injury will also be investigated. Participants with pain identified in phase 1 will be invited to partake in a qualitative descriptive and contextually designed phase 2 to explore their lived experience of pain through in-depth interviews. The results of phases 1 and 2 will then be used with the assistance from experts to develop a framework for self-management of pain using a modified Delphi study. Data analysis will include descriptive and inferential statistics (quantitative data) and thematic content analysis (qualitative data).Ethics and disseminationApproval for this study is granted by the Faculty of Health Sciences Research Ethics Committee of the University of the Pretoria (approval number 125/2018). This study is registered with the South African National Health Research Database (reference GP201806005). This study’s findings will be shared in academic conferences and published in scientific peer-reviewed journals.


2001 ◽  
Vol 5 (1) ◽  
pp. 146-156
Author(s):  
Giuseppe Riva

The paper presents an overview of the ergonomic/design issues of a VR-enhanced orthopaedic appliance to be used in rehabilitation of patients with Spinal Cord Injury. First, some design considerations are described and an outline of aims which the tool should pursue are given. Finally, the design issues are described focusing both on the development of a test-bed rehabilitation device and on the description of a preliminary study detailing the use of the device with a long-term SCI patient. The basis for this approach is that physical therapy and motivation are crucial for maintaining flexibility and muscle strength and for reorganizing the nervous system after SCIs.


2020 ◽  
Vol 14 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Madhusree Sengupta ◽  
Anupam Gupta ◽  
Meeka Khanna ◽  
U. K. Rashmi Krishnan ◽  
Dhritiman Chakrabarti

Author(s):  
Lynsey D. Duffell ◽  
Sue Paddison ◽  
Ahmad F. Alahmary ◽  
Nick Donaldson ◽  
Jane Burridge

Abstract Background Functional Electrical Stimulation (FES) cycling can benefit health and may lead to neuroplastic changes following incomplete spinal cord injury (SCI). Our theory is that greater neurological recovery occurs when electrical stimulation of peripheral nerves is combined with voluntary effort. In this pilot study, we investigated the effects of a one-month training programme using a novel device, the iCycle, in which voluntary effort is encouraged by virtual reality biofeedback during FES cycling. Methods Eleven participants (C1-T12) with incomplete SCI (5 sub-acute; 6 chronic) were recruited and completed 12-sessions of iCycle training. Function was assessed before and after training using the bilateral International Standards for Neurological Classification of SCI (ISNC-SCI) motor score, Oxford power grading, Modified Ashworth Score, Spinal Cord Independence Measure, the Walking Index for Spinal Cord Injury and 10 m-walk test. Power output (PO) was measured during all training sessions. Results Two of the 6 participants with chronic injuries, and 4 of the 5 participants with sub-acute injuries, showed improvements in ISNC-SCI motor score > 8 points. Median (IQR) improvements were 3.5 (6.8) points for participants with a chronic SCI, and 8.0 (6.0) points for those with sub-acute SCI. Improvements were unrelated to other measured variables (age, time since injury, baseline ISNC-SCI motor score, baseline voluntary PO, time spent training and stimulation amplitude; p > 0.05 for all variables). Five out of 11 participants showed moderate improvements in voluntary cycling PO, which did not correlate with changes in ISNC-SCI motor score. Improvement in PO during cycling was positively correlated with baseline voluntary PO (R2 = 0.50; p < 0.05), but was unrelated to all other variables (p > 0.05). The iCycle was not suitable for participants who were too weak to generate a detectable voluntary torque or whose effort resulted in a negative torque. Conclusions Improved ISNC-SCI motor scores in chronic participants may be attributable to the iCycle training. In sub-acute participants, early spontaneous recovery and changes due to iCycle training could not be distinguished. The iCycle is an innovative progression from existing FES cycling systems, and positive results should be verified in an adequately powered controlled trial. Trial registration ClinicalTrials.gov, NCT03834324. Registered 06 February 2019 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03834324. Protocol V03, dated 06.08.2015.


Sign in / Sign up

Export Citation Format

Share Document