Sharing, knowledge management and big data: A partial genealogy of the data scientist

2015 ◽  
Vol 18 (4-5) ◽  
pp. 413-428 ◽  
Author(s):  
Robert W Gehl
2017 ◽  
Vol 21 (3) ◽  
pp. 623-639 ◽  
Author(s):  
Tingting Zhang ◽  
William Yu Chung Wang ◽  
David J. Pauleen

Purpose This paper aims to investigate the value of big data investments by examining the market reaction to company announcements of big data investments and tests the effect for firms that are either knowledge intensive or not. Design/methodology/approach This study is based on an event study using data from two stock markets in China. Findings The stock market sees an overall index increase in stock prices when announcements of big data investments are revealed by grouping all the listed firms included in the sample. Increased stock prices are also the case for non-knowledge intensive firms. However, the stock market does not seem to react to big data investment announcements by testing the knowledge intensive firms along. Research limitations/implications This study contributes to the literature on assessing the economic value of big data investments from the perspective of big data information value chain by taking an unexpected change in stock price as the measure of the financial performance of the investment and by comparing market reactions between knowledge intensive firms and non-knowledge intensive firms. Findings of this study can be used to refine practitioners’ understanding of the economic value of big data investments to different firms and provide guidance to their future investments in knowledge management to maximize the benefits along the big data information value chain. However, findings of study should be interpreted carefully when applying them to companies that are not publicly traded on the stock market or listed on other financial markets. Originality/value Based on the concept of big data information value chain, this study advances research on the economic value of big data investments. Taking the perspective of stock market investors, this study investigates how the stock market reacts to big data investments by comparing the reactions to knowledge-intensive firms and non-knowledge-intensive firms. The results may be particularly interesting to those publicly traded companies that have not previously invested in knowledge management systems. The findings imply that stock investors tend to believe that big data investment could possibly increase the future returns for non-knowledge-intensive firms.


Author(s):  
Dominik Krimpmann ◽  
Anna Stühmeier

Big Data and Analytics have become key concepts within the corporate world, both commercially and from an information technology (IT) perspective. This paper presents the results of a global quantitative analysis of 400 IT leaders from different industries, which examined their attitudes toward dedicated roles for an Information Architect and a Data Scientist. The results illustrate the importance of these roles at the intersection of business and technology. They also show that to build sustainable and quantifiable business results and define an organization's competitive positioning, both roles need to be dedicated, rather than shared across different people. The research also showed that those dedicated roles contribute actively to a sustainable competitive positioning mainly driven by visualization of complex matters.


2019 ◽  
Vol 57 (8) ◽  
pp. 1923-1936 ◽  
Author(s):  
Alberto Ferraris ◽  
Alberto Mazzoleni ◽  
Alain Devalle ◽  
Jerome Couturier

Purpose Big data analytics (BDA) guarantees that data may be analysed and categorised into useful information for businesses and transformed into big data related-knowledge and efficient decision-making processes, thereby improving performance. However, the management of the knowledge generated from the BDA as well as its integration and combination with firm knowledge have scarcely been investigated, despite an emergent need of a structured and integrated approach. The paper aims to discuss these issues. Design/methodology/approach Through an empirical analysis based on structural equation modelling with data collected from 88 Italian SMEs, the authors tested if BDA capabilities have a positive impact on firm performances, as well as the mediator effect of knowledge management (KM) on this relationship. Findings The findings of this paper show that firms that developed more BDA capabilities than others, both technological and managerial, increased their performances and that KM orientation plays a significant role in amplifying the effect of BDA capabilities. Originality/value BDA has the potential to change the way firms compete through better understanding, processing, and exploiting of huge amounts of data coming from different internal and external sources and processes. Some managerial and theoretical implications are proposed and discussed in light of the emergence of this new phenomenon.


2015 ◽  
Vol 17 (5) ◽  
pp. 983-986 ◽  
Author(s):  
Chittaranjan Hota ◽  
Shambhu Upadhyaya ◽  
Jamal Nazzal Al-Karaki

2018 ◽  
Vol 14 (1) ◽  
pp. 30-50 ◽  
Author(s):  
William H. Money ◽  
Stephen J. Cohen

This article analyzes the properties of unknown faults in knowledge management and Big Data systems processing Big Data in real-time. These faults introduce risks and threaten the knowledge pyramid and decisions based on knowledge gleaned from volumes of complex data. The authors hypothesize that not yet encountered faults may require fault handling, an analytic model, and an architectural framework to assess and manage the faults and mitigate the risks of correlating or integrating otherwise uncorrelated Big Data, and to ensure the source pedigree, quality, set integrity, freshness, and validity of the data. New architectures, methods, and tools for handling and analyzing Big Data systems functioning in real-time will contribute to organizational knowledge and performance. System designs must mitigate faults resulting from real-time streaming processes while ensuring that variables such as synchronization, redundancy, and latency are addressed. This article concludes that with improved designs, real-time Big Data systems may continuously deliver the value of streaming Big Data.


2020 ◽  
pp. 37-51
Author(s):  
Jerzy Gołuchowski ◽  
Barbara Filipczyk

Sign in / Sign up

Export Citation Format

Share Document