Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational fluid dynamics simulations for rapid engine design optimization
In recent years, the use of machine learning-based surrogate models for computational fluid dynamics (CFD) simulations has emerged as a promising technique for reducing the computational cost associated with engine design optimization. However, such methods still suffer from drawbacks. One main disadvantage is that the default machine learning (ML) hyperparameters are often severely suboptimal for a given problem. This has often been addressed by manually trying out different hyperparameter settings, but this solution is ineffective in case of a high-dimensional hyperparameter space. Besides this problem, the amount of data needed for training is also not known a priori. In response to these issues that need to be addressed, the present work describes and validates an automated active learning approach, AutoML-GA, for surrogate-based optimization of internal combustion engines. In this approach, a Bayesian optimization technique is used to find the best machine learning hyperparameters based on an initial dataset obtained from a small number of CFD simulations. Subsequently, a genetic algorithm is employed to locate the design optimum on the ML surrogate surface. In the vicinity of the design optimum, the solution is refined by repeatedly running CFD simulations at the projected optima and adding the newly obtained data to the training dataset. It is demonstrated that AutoML-GA leads to a better optimum with a lower number of CFD simulations, compared to the use of default hyperparameters. The proposed framework offers the advantage of being a more hands-off approach that can be readily utilized by researchers and engineers in industry who do not have extensive machine learning expertise.