Novel tensor subspace system identification algorithm to identify time-varying modal parameters of bridge structures
Subspace-based system identification algorithms have been developed as an advanced technique for performing modal analysis. We introduce a novel tensor subspace-based algorithm to identify the time-varying modal parameters of bridge structures. A new time dimension is introduced in the traditional Hankel matrix, and a mathematical model of tensor subspace decomposition is established. Combined with the stabilization diagram, tensor parallel factor decomposition is used to estimate the frequencies, mode shapes, and modal damping ratios. The effectiveness of the proposed algorithm is validated by comparing it with the classical sliding-window–based stochastic subspace algorithm on a model cable-stayed bridge dynamic test. The proposed algorithm is further applied to process the dynamic responses of a real bridge health monitoring system to identify its time-varying modal frequencies. Our results demonstrated that the proposed algorithm significantly reduces computational efforts and extends the range of solution ideas for future out-only time-varying system identification problems.