scholarly journals Influence of layering pattern of modified kenaf fiber on thermomechanical properties of epoxy composites

2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2052
Author(s):  
Farah Hanan ◽  
Mohammad Jawaid ◽  
Md Tahir Paridah ◽  
Jesuarockiam Naveen

In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4801
Author(s):  
Yasir Khaleel Kirmasha ◽  
Mohaiman J. Sharba ◽  
Zulkiflle Leman ◽  
Mohamed Thariq Hameed Sultan

Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.


2015 ◽  
Vol 773-774 ◽  
pp. 48-52
Author(s):  
Al Emran Ismail

This present work investigated the perforated impact strength of woven kenaf fiber reinforced composites subjected to different projectile velocities. Three layers of woven kenaf mats were stacked with four different fiber orientations 0, 15, 30 and 450. The composites are fabricated using hand-layout where the woven mats were placed into the mould with a polymeric resin. The wetted composites were compressed to squeeze out the excessive resin and to eliminate the void contents. The hardened samples were shaped into a standard geometry specified by ASTM D3763. Then, the composites were perforated impact using different speeds 1, 2 and 3 m/s. According to the present results, it was found that the perforated impact strength reduced when the impact velocity was increased. However, the impact strength of 150 oriented composite was higher when compared with other types of composites.


2014 ◽  
Vol 35 (10) ◽  
pp. 1900-1910 ◽  
Author(s):  
Yakubu Dan-Mallam ◽  
Mohamad Zaki Abdullah ◽  
Puteri Sri Melor Megat Yusoff

2015 ◽  
Vol 773-774 ◽  
pp. 43-47
Author(s):  
Al Emran Ismail ◽  
Muhammad Aiman Hasan ◽  
K.A. Kamaruddin

This present work investigated the perforated impact strength of woven kenaf fiber reinforced composites subjected to different projectile velocities. Three layers of woven kenaf mats were stacked with four different fiber orientations 0, 15, 30 and 450. The composites are fabricated using hand-layout where the woven mats were placed into the mould with a polymeric resin. The wetted composites were compressed to squeeze out the excessive resin and to eliminate the void contents. The hardened samples were shaped into a standard geometry specified by ASTM D3763. Then, the composites were perforated impact using different speeds 1, 2 and 3 m/s. According to the present results, it was found that the perforated impact strength reduced when the impact velocity was increased. However, the impact strength of 150 oriented composite was higher when compared with other types of composites.


2021 ◽  
Vol 16 ◽  
pp. 155892502110401
Author(s):  
Reza Arjmandi ◽  
Ilknur Yıldırım ◽  
Fiona Hatton ◽  
Azman Hassan ◽  
Christopher Jefferies ◽  
...  

Recently development of high-performance polymer composites made from natural resources in the various sectors is increasing tremendously due to the environmental issues and health hazard possessed by the synthetic fibers during disposal and manufacturing. Among the many different types of natural resources, kenaf fibers have been extensively investigated as an alternative reinforcement for polymer composites over the past few years due to their low cost, good mechanical properties, high specific strength, nonabrasive, eco-friendly, and biodegradability characteristics. Kenaf is regarded as an industrial crop in Malaysia and grown commercially in other parts of the world for different applications. It is certainly one of the important plants cultivated for natural fibers globally which has great potential to use as automotive and construction materials. In many research studies, kenaf fibers have been used as reinforcement in unsaturated polyester (UPE) which perfectly improved the features of the polyester resin. The tensile properties of kenaf fiber reinforced UPE are mainly influenced by the interfacial adhesion between the fibers and the polyester resin. Several chemical modifications are employed to improve the interfacial bonding between kenaf fibers and polyester, resulting in the enhancement of mechanical properties of the composites. Therefore, this paper explores and highlights of the previous studies around kenaf fiber reinforced UPE composites, in terms of processing methods, mechanical, water absorption, and morphological properties to provide a perfect source of literature for doing further research in this topic.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Author(s):  
Al Emran Ismail ◽  
◽  
Azmahani Sadikin ◽  
Mohd Nasrull Abdol Rahman ◽  
Shahruddin Mahzan ◽  
...  

2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

2021 ◽  
Author(s):  
Johannes Essmeister ◽  
M. Josef Taublaender ◽  
Thomas Koch ◽  
D. Alonso Cerrón-Infantes ◽  
Miriam M. Unterlass ◽  
...  

A novel class of fully organic composite materials with well-balanced mechanical properties and improved thermal stability was developed by incorporating highly crystalline, hydrothermally synthesized polyimide microparticles into an epoxy matrix.


Sign in / Sign up

Export Citation Format

Share Document