Developing a thermo-regulative system for nonwoven textiles using microencapsulated organic coconut oil

2020 ◽  
pp. 152808372092149
Author(s):  
Saraç E Gözde ◽  
Öner Erhan ◽  
Kahraman M Vezir

Organic coconut oil was investigated as a bio-based phase change material in core, and melamine formaldehyde was used as shell material to fabricate microencapsulated phase change material for thermo-regulation in nonwoven textiles. The microcapsules were synthesized using in situ polymerization method. The produced microcapsules (microencapsulated phase change material) were applied by knife coating in different ratios (1:5 and 1.5:5; MPCM: coating paste by wt.) to 100% polypropylene nonwoven, porous, and hydrophilic layer of a laminated, spunbond, and double-layer fabric. The coated layer was confined within two layers of the fabric to develop a thermo-regulative system on the nonwoven fabric to regulate the body temperature in surgeries. The two layers were composed by applying heat (140°C) and pressure (12 kg/cm2). Organic coconut oil, the fabricated microcapsule, and the composite fabrics were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Scanning electron microscopy results revealed that spherical and uniform microcapsules were obtained with an approximate particle size of 2–6 µm. Differential scanning calorimetry results indicated that microencapsulated phase change material and the composite fabrics possessed significant melting enthalpies of 72.9 and 8.4–11.4 J/g, respectively, at peak melting temperatures between 21.6 and 22.8°C within human comfort temperature range. The utilization of coconut oil as a phase change material and the composite integration of this phase change material to a nonwoven fabric bring forward a novelty for future applications.

2021 ◽  
Vol 2021 ◽  
pp. 58-64
Author(s):  
E.G. Saraç ◽  
E. Öner ◽  
M.V. Kahraman

Phase change materials (PCMs) are thermal energy storing materials which are adopted in various industries including textiles. They provide temperature regulation by absorbing the heat from the ambiance or releasing the latent heat that they store. PCMs are widely integrated into textiles in microencapsulated form where the core PCM is covered by the microcapsule shell and protected during phase change. This form also provides a higher thermal conductivity. In this work, a blend of organic coconut oil and n-octadecane were used as phase change material in core, and melamine formaldehyde was used as shell material to develop microencapsulated PCM for heat storage. The microcapsules were produced by using in situ polymerization method. The developed microcapsules (MPCMs) were integrated to a recycled PES (polyester) nonwoven fabric, generated from PET (polyethylene terephthalate) fibres, and manufactured by combing and needle punching technique. The MPCMs were implemented to the fabric by coating method. The core PCM, MPCM, and the coated nonwoven fabric were assessed by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). SEM results indicated that spherical and uniform microcapsules were obtained with a particle size of 3-9 μm. DSC results revealed that MPCM and the MPCM coated nonwoven fabric possessed a remarkable melting enthalpy of 111 J/g and 30.9 J/g, respectively at peak melting temperatures of 28.1°C and 27.4°C.


2021 ◽  
Vol 13 (19) ◽  
pp. 10731
Author(s):  
Cibele Eller ◽  
Mohamad Rida ◽  
Katharina Boudier ◽  
Caio Otoni ◽  
Gabriela Celani ◽  
...  

One of the most efficient measures to reduce energy consumption in buildings is using passive thermal comfort strategies. This paper shows the potential of coconut oil as a bio-based phase change material (PCM) incorporated into construction components to improve the thermal performance of buildings for several climates, due to its environmental advantages, wide availability, and economic feasibility. The thermophysical properties of coconut oil were determined through differential scanning calorimetry. Numerical simulations were conducted in ESP-r, comparing an office space with a gypsum ceiling to one with coconut oil as PCM for 12 climate types in the Köppen–Geiger classification. The results show that coconut oil is a suitable PCM for construction applications under tropical and subtropical climates. This PCM can provide year-round benefits for these climates, even though a higher melting point is needed for optimum performance during hotter months. The highest demand reduction of 32% and a maximum temperature reduction of 3.7 °C were found in Mansa, Zambia (Cwa climate). The best results occur when average outdoor temperatures are within the temperature range of phase change. The higher the diurnal temperature range, the better the results. Our findings contribute to a better understanding of coconut oil in terms of its properties and potential for application in the building sector as PCM.


2016 ◽  
Vol 40 (4) ◽  
pp. 299-310 ◽  
Author(s):  
Jignesh S Patel ◽  
Elizabeth Gao ◽  
Veera M Boddu ◽  
Larry D Stephenson ◽  
Ashok Kumar

Thermal energy storage systems incorporated with phase change materials have potential applications to control energy use by building envelopes. However, it is essential to evaluate long-term performance of the phase change materials and cost-effectiveness prior to full-scale implementation. For this reason, we have used the accelerated long-term approach for studying the thermal performance and chemical stability of a commercially available bio-based phase change material during thermal cycling over a simulated period of 20 years. The phase change material was subjected to accelerate thermal aging under controlled environmental conditions. Small samples of the phase change material were periodically removed to measure its latent heat, thermal decomposition, and chemical stability using various analytical methods such as differential scanning calorimetry, thermogravimetry analysis, and infrared spectroscopy. The topographic changes in the phase change material due to the aging process were observed using scanning electron microscopy. The differential scanning calorimetry data indicate a significant reduction of 12% in the latent heat during heating and cooling cycles during the initial 6.2 years remain nearly constant thereafter. The thermogravimetry analysis results showed that the phase change material has excellent thermal stability within the working temperature range and also shows long-term decomposition temperature stability. The Fourier transform infrared spectra of the phase change material indicate absorption of moisture but the phase change material was chemically stable over the duration of accelerated aging cycles. After several aging cycles, the baseline surface morphology appeared to be changed from uniform mix of phase change material with microstructures to segregated microstructures as evidenced by the observation of the scanning electron micrographs.


2020 ◽  
Vol 56 (3) ◽  
pp. 2176-2191
Author(s):  
Jun Li ◽  
Xiaoyun Zhu ◽  
Huichang Wang ◽  
Pengcheng Lin ◽  
Lisi Jia ◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 155892502110295
Author(s):  
Abdus Shahid ◽  
Solaiman Miah ◽  
Abdur Rahim

Jute bags are widely used to carry food grains and other materials that may be prone to quality deterioration due to thermal fluctuation. Thermal and moisture properties play a significant role in the packaging materials in the form of a container. This study deals with the effect of microencapsulated phase change material (MPCM) with hydrophobic binder on thermal and moisture management properties of jute fabric. Jute fabric was treated with MPCM by pad-dry-cure method. The treated sample was characterized by thermogravimetric analysis (TGA), differential scanning colorimeter (DSC), scanning electron microscope (SEM), moisture management tester (MMT), and air permeability tester. The results revealed that MPCM treated jute fabric shows greater thermal stability and heat absorption ability of 10.58 J/g while changing from solid to liquid phase. The SEM image ensures even distribution of MPCMs on fabric surface and surface roughness was also observed using image processing software. The air permeability was found to decrease whereas the water repellency enhanced in the developed sample.


Sign in / Sign up

Export Citation Format

Share Document