scholarly journals Skin Epidermis and Adnexa Regrowth Induced by Treatment With Artificial Dermal Template After Full-Thickness Skin Wound

2019 ◽  
Vol 18 (1) ◽  
pp. 42-55
Author(s):  
Binghui Li ◽  
Hang Xue ◽  
Xiaobo Zhao ◽  
Yuxiong Weng ◽  
Gongchi Li ◽  
...  

Full-thickness skin wounds are common accidents. Although healing can be achieved by treatments like autologous skin grafts, donor site morbidity is hardly evitable. In this article, we provide compelling evidence demonstrating that artificial dermal template (ADT)-treated wound healing is achieved by regrowth of skin epidermis as well as adnexa without skin grafts by use of rodent models. First, by fixating a chamber to the wound edge, we confirmed that wound healing was achieved by regeneration instead of contracture. We found highly proliferative cells in adnexa in the newly formed skin. In the distal edge of newly formed skin, we identified immature hair follicles at early developing stages, suggesting they were newly regenerated. Second, we observed that the Lgr5-positive hair follicle stem cells contributed to formation of new hair follicles through a lineage tracing model. Also, Lgr6-positive cells were enriched in distal edge of newly developed skin. Finally, WNT signaling pathway mediators were highly expressed in the new skin epidermis and adnexa, implying a potential role of WNT signaling during ADT treatment-stimulated skin regrowth. Taken together, our findings demonstrated that full skin regrowth can be induced by ADT treatment alone, thus arguing for its wide clinical application in skin wound treatment.

2018 ◽  
Vol 6 (11) ◽  
pp. 2859-2870 ◽  
Author(s):  
Chao Qi ◽  
Luming Xu ◽  
Yan Deng ◽  
Guobin Wang ◽  
Zheng Wang ◽  
...  

Treating full-thickness skin injury with photo-crosslinkable sericin hydrogel for scarless regeneration with effective restoration of skin appendages.


2013 ◽  
Vol 51 (12) ◽  
pp. 1600-1606 ◽  
Author(s):  
Mahere Rezazade Bazaz ◽  
Mohammad Mashreghi ◽  
Nasser Mahdavi Shahri ◽  
Mansour Mashreghi ◽  
Ahmad Asoodeh ◽  
...  

Burns ◽  
2012 ◽  
Vol 38 (6) ◽  
pp. 820-829 ◽  
Author(s):  
Cécile Philandrianos ◽  
Lucile Andrac-Meyer ◽  
Serge Mordon ◽  
Jean-Marc Feuerstein ◽  
Florence Sabatier ◽  
...  

2022 ◽  
Vol 13 ◽  
pp. 204173142110630
Author(s):  
Peng Chang ◽  
Shijie Li ◽  
Qian Sun ◽  
Kai Guo ◽  
Heran Wang ◽  
...  

Traditional tissue engineering skin are composed of living cells and natural or synthetic scaffold. Besize the time delay and the risk of contamination involved with cell culture, the lack of autologous cell source and the persistence of allogeneic cells in heterologous grafts have limited its application. This study shows a novel tissue engineering functional skin by carrying minimal functional unit of skin (MFUS) in 3D-printed polylactide-co-caprolactone (PLCL) scaffold and collagen gel (PLCL + Col + MFUS). MFUS is full-layer micro skin harvested from rat autologous tail skin. 3D-printed PLCL elastic scaffold has the similar mechanical properties with rat skin which provides a suitable environment for MFUS growing and enhances the skin wound healing. Four large full-thickness skin defects with 30 mm diameter of each wound are created in rat dorsal skin, and treated either with tissue engineering functional skin (PLCL + Col + MFUS), or with 3D-printed PLCL scaffold and collagen gel (PLCL + Col), or with micro skin islands only (Micro skin), or without treatment (Normal healing). The wound treated with PLCL + Col + MFUS heales much faster than the other three groups as evidenced by the fibroblasts migration from fascia to the gap between the MFUS dermis layer, and functional skin with hair follicles and sebaceous gland has been regenerated. The PLCL + Col treated wound heals faster than normal healing wound, but no skin appendages formed in PLCL + Col-treated wound. The wound treated with micro skin islands heals slower than the wounds treated either with tissue engineering skin (PLCL + Col + MFUS) or with PLCL + Col gel. Our results provide a new strategy to use autologous MFUS instead “seed cells” as the bio-resource of engineering skin for large full-thickness skin wound healing.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandro Andreone ◽  
Daan den Hollander

The coverage of massive burns still represents a big challenge, even if several strategies are to date available to deal with this situation. In this study, we describe the use of a combination of platelet-rich fibrin and micrograft spray-on skin in order to increase the yield of grafted cells in patients. We treated a total of five patients, of which two were affected by massive burns and three with chronic burn wounds. Briefly, autologous micrografts were obtained by Rigenera technology using a class I medical device called Rigeneracons. The micrografts were then combined with PRF and sprayed on the wound bed by a Spraypen. Before applying PRF/micrograft spray-on skin, the wound bed was covered with an Integra® dermal template, and the wounds were dressed with a layer of antimicrobial dressing applied directly over the silicone layer. When the silicone layer of the dermal template started showing signs of separation, the wound was considered ready for grafting. In all cases, we observed a fast and complete skin graft on average after 7-10 days by PRF/micrograft spray-on skin treatment. In particular, two patients with massive burns reported rapid reepithelialization, and three patients with chronic burn wounds, two of whom had failed skin grafts before the procedure, had complete wound healing within a week. In conclusion, the results showed in this study suggest that the use of PRF/micrograft spray-on skin represents a promising approach in the management of burns or chronic burn wounds.


2020 ◽  
Vol 12 (52) ◽  
pp. 57782-57797
Author(s):  
Bo Yang ◽  
Jiliang Song ◽  
Yuhang Jiang ◽  
Ming Li ◽  
Jingjing Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document