scholarly journals Anticancer Activity in Honeybee Propolis: Functional Insights to the Role of Caffeic Acid Phenethyl Ester and Its Complex With γ-Cyclodextrin

2018 ◽  
Vol 17 (3) ◽  
pp. 867-873 ◽  
Author(s):  
Yoshiyuki Ishida ◽  
Ran Gao ◽  
Navjot Shah ◽  
Priyanshu Bhargava ◽  
Takahiro Furune ◽  
...  

Besides honey, honeybees make a sticky substance (called propolis/bee glue) by mixing saliva with poplar tree resin and other botanical sources. It is known to be rich in bioactivities of which the anticancer activity is most studied. Caffeic acid phenethyl ester (CAPE) is a key anticancer component in New Zealand propolis. We have earlier investigated the molecular mechanism of anticancer activity in CAPE and reported that it activates DNA damage signaling in cancer cells. CAPE-induced growth arrest of cells was mediated by downregulation of mortalin and activation of p53 tumor suppressor protein. When antitumor and antimetastasis activities of CAPE were examined in vitro and in vivo, we failed to find significant activities, which was contrary to our expectations. On careful examination, it was revealed that CAPE is unstable and rather gets easily degraded into caffeic acid by secreted esterases. Interestingly, when CAPE was complexed with γ-cyclodextrin (γCD) the activities were significantly enhanced. In the present study, we report that the CAPE-γCD complex with higher cytotoxicity to a wide range of cancer cells is stable in acidic milieu and therefore recommended as an anticancer amalgam. We also report a method for preparation of stable and less-pungent powder of propolis that could be conveniently used for health and therapeutic benefits.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2370
Author(s):  
Jia Wang ◽  
Priyanshu Bhargava ◽  
Yue Yu ◽  
Anissa Nofita Sari ◽  
Huayue Zhang ◽  
...  

Caffeic acid phenethyl ester (CAPE) is a key bioactive ingredient of honeybee propolis and is claimed to have anticancer activity. Since mortalin, a hsp70 chaperone, is enriched in a cancerous cell surface, we recruited a unique cell internalizing anti-mortalin antibody (MotAb) to generate mortalin-targeting CAPE nanoparticles (CAPE-MotAb). Biophysical and biomolecular analyses revealed enhanced anticancer activity of CAPE-MotAb both in in vitro and in vivo assays. We demonstrate that CAPE-MotAb cause a stronger dose-dependent growth arrest/apoptosis of cancer cells through the downregulation of Cyclin D1-CDK4, phospho-Rb, PARP-1, and anti-apoptotic protein Bcl2. Concomitantly, a significant increase in the expression of p53, p21WAF1, and caspase cleavage was obtained only in CAPE-MotAb treated cells. We also demonstrate that CAPE-MotAb caused a remarkably enhanced downregulation of proteins critically involved in cell migration. In vivo tumor growth assays for subcutaneous xenografts in nude mice also revealed a significantly enhanced suppression of tumor growth in the treated group suggesting that these novel CAPE-MotAb nanoparticles may serve as a potent anticancer nanomedicine.


2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


2013 ◽  
Vol 65 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Sumeyya Akyol ◽  
Gulfer Ozturk ◽  
Zeynep Ginis ◽  
Ferah Armutcu ◽  
M. Ramazan Yigitoglu ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


2019 ◽  
Vol 21 (Supplement_4) ◽  
pp. iv16-iv16
Author(s):  
Marjorie Boissinot ◽  
Sarra Limam ◽  
Maria Collado-González ◽  
Yadira Gonzalez-Espinosa ◽  
Heiko Wurdak ◽  
...  

Abstract One of the biggest challenges when treating brain tumours is achieving efficient delivery of therapeutic agents to the brain and more specifically to the cancer cells. MicroRNA-1300 was identified in our group as a very promising therapeutic microRNA given its cytotoxic effect when introduced in both established as well as cancer-stem-like patient-derived glioblastoma cultures, while not affecting differentiated glioblastoma cells. We are now collaborating to assess the potential efficiency of the natural biopolymer chitosan to form nanocomplexes containing the mature form of microRNA-1300 for delivery. Chitosan has been established as a highly attractive biocompatible polymer to deliver both in vitro and in vivo therapeutic nucleotides intracellularly. In previous studies, we have shown chitosan’s efficacy to form spherical nanocomplexes with microRNA and apply them to the downregulation of JAMA-A mRNA in MCF-7 breast cancer cells. Chitosan can also be chemically conjugated to introduce affinity towards a wide range of cellular targets (e.g. with aptamers). Methods We have optimised of the composition and characterised the biophysical properties of chitosan-microRNA nanocomplexes of varying (+/-) charge ratios using both a control nontargeting microRNA coupled to a fluorochrome (CS-miRdy547, efficiency of cell entry) and mature microRNA-1300 (CS-mi1300, efficient release and biological effect). We have tested the nanocomplexes in 2D monolayers and 3D spheroid cultures on established U251 as well as two patient-derived cultures. Reverse transfection was used as positive control. Results The control nanoparticles of CS-miRdy547 are taken up by the patient-derived cultures in 2D and 3D. Analysis is ongoing using the CS-miR-1300 nanoparticles.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Kazuko Kobayashi ◽  
Takanori Sasaki ◽  
Fumiaki Takenaka ◽  
Hiromasa Yakushiji ◽  
Yoshihiro Fujii ◽  
...  

Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb toin vivoimaging to detect MSLN-expressing tumors. Inin vitroandex vivoimmunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with64Cu via a chelating agent DOTA and was used in bothin vitrocell binding assay andin vivopositron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions.


2007 ◽  
Vol 55 (9) ◽  
pp. 3398-3407 ◽  
Author(s):  
Nicola Celli ◽  
Luana K. Dragani ◽  
Stefania Murzilli ◽  
Tommaso Pagliani ◽  
Andreina Poggi

MedChemComm ◽  
2013 ◽  
Vol 4 (5) ◽  
pp. 777 ◽  
Author(s):  
Hye Sun Lee ◽  
Soo Youn Lee ◽  
So Hyun Park ◽  
Jin Hyung Lee ◽  
Sang Kook Ahn ◽  
...  

2012 ◽  
Vol 11 (10) ◽  
pp. 2193-2201 ◽  
Author(s):  
Aamir Ahmad ◽  
Sanila H. Sarkar ◽  
Bassam Bitar ◽  
Shadan Ali ◽  
Amro Aboukameel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document