scholarly journals Inhibition to Epithelial-Mesenchymal Transition and Metastatic Potential In Colorectal Cancer Cell By Combination of Traditional Chinese Medicine Formulation Jiedu Sangen Decoction and PD-L1 Inhibitor

2020 ◽  
Vol 19 ◽  
pp. 153473542097248
Author(s):  
Feiyu Shan ◽  
Leitao Sun ◽  
Leyin Zhang ◽  
Kaibo Guo ◽  
Qingying Yan ◽  
...  

Background: Jiedu Sangen Decoction (JSD), a traditional Chinese medicine formula, has been widely applied in the treatment of gastrointestinal cancer, especially in colorectal cancer. Our study mainly aimed to assess the combined efficacy of Jiedu Sangen aqueous extract (JSAE) and a PD-L1 inhibitor (PI) in colon cancer cells migration and invasion, along with epithelial-mesenchymal transition, and then provide deep insights into the potential mechanism. Methods: We explored the inhibitory effects on invasion and metastasis and the reverse effect on EMT process in CT-26 colon cancer cell via Transwell migration assay, Matrigel invasion assay and confocal laser scanning microscopy. Furthermore, regulation in expression of EMT-related proteins and molecular biomarkers and underlying signal pathway proteins were detected through Western blotting and IHC. Results: The combination of JSD and PD-L1 inhibitor could inhibit migration, invasive ability and EMT of CT-26 cells in a concentration-dependent manner. Meanwhile, JSD combined with PD-L1 inhibitor could also remarkably reverse EMT and metastasis in vivo. In addition, the protein expression of N-cadherin, Slug, Snail, Vimentin was down-regulated along with E-cadherin s up-regulation with the combination of JSD and PD-L1 inhibitor, while that of PI3K/AKT was notably down-regulated. Conclusions: These findings indicated that JSAE and a PD-L1 inhibitor could drastically inhibit the migration and invasion of colorectal cancer by reversing EMT through the PI3K/AKT signaling pathway.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Zhang ◽  
Tao Peng ◽  
Qingying Yan ◽  
Leitao Sun ◽  
Haojun Miao ◽  
...  

Jiedu Sangen Decoction (JSD), a traditional Chinese medicine (TCM) formula, has been widely used in China to treat gastrointestinal cancer, especially as an adjuvant therapy in colorectal cancer (CRC) patients. This study aimed to evaluate the efficacy of JSD and Jiedu Sangen aqueous extract (JSAE) in colon cancer cells and explored the underlining mechanisms by cytotoxicity assay, scratch assay, transwell migration assay, matrigel invasion assay, confocal laser scanning microscopy, and western blot analysis. We demonstrated that JSAE inhibited the growth of colon cancer SW480 cells in a dose-dependent manner and JSAE repressed cancer cell migration and invasion. Furthermore, epithelial mesenchymal transition (EMT) was reversed by JSAE via enhancing E-cadherin expression and attenuating protein levels of EMT promoting factors such as N-cadherin, Slug, and ZEB1. These findings provided the first experimental evidence confirming the efficacy of JSAE in repressing invasion and metastasis of CRC and paving a way for the broader use of JSD in clinic.


2020 ◽  
Vol 21 (5) ◽  
pp. 1827 ◽  
Author(s):  
Yahima Frión-Herrera ◽  
Daniela Gabbia ◽  
Michela Scaffidi ◽  
Letizia Zagni ◽  
Osmany Cuesta-Rubio ◽  
...  

The majority of deaths related to colorectal cancer (CRC) are associated with the metastatic process. Alternative therapeutic strategies, such as traditional folk remedies, deserve attention for their potential ability to attenuate the invasiveness of CRC cells. The aim of this study is to investigate the biological activity of brown Cuban propolis (CP) and its main component nemorosone (NEM) and to describe the molecular mechanism(s) by which they inhibit proliferation and metastatic potential of 2 CRC cell lines, i.e., HT-29 and LoVo. Our results show that CP and NEM significantly decreased cell viability and inhibited clonogenic capacity of CRC cells in a dose and time-dependent manner, by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Furthermore, CP and NEM downregulated BCL2 gene expression and upregulated the expression of the proapoptotic genes TP53 and BAX, with a consequent activation of caspase 3/7. They also attenuated cell migration and invasion by inhibiting MMP9 activity, increasing E-cadherin and decreasing β-catenin and vimentin expression, proteins involved in the epithelial–mesenchymal transition (EMT). In conclusion NEM, besides displaying antiproliferative activity on CRC cells, is able to decrease their metastatic potential by modulating EMT-related molecules. These finding provide new insight about the mechanism(s) of the antitumoral properties of CP, due to NEM content.


Oncogene ◽  
2015 ◽  
Vol 35 (24) ◽  
pp. 3151-3162 ◽  
Author(s):  
Q Zhang ◽  
T Wei ◽  
K Shim ◽  
K Wright ◽  
K Xu ◽  
...  

Abstract Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241–5253). We investigated the mechanisms by which SPRY regulates epithelial–mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3′ untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1 −/− and Spry2 −/− double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15107-e15107
Author(s):  
Wan He ◽  
Han Wu ◽  
Dongcheng Liu ◽  
Wenwen Li ◽  
Ruilian Xu ◽  
...  

e15107 Background: Our previous studies revealed the increased expression of Jagged 2 (JAG2) in most intestinal cancer tissues. In colon cancer cell lines, JAG2 involved in the regulation of migration and invasion without affecting cell proliferation. This study further explored the mechanisms of how JAG2 promotes migration and invasion of colorectal cancer cells. Methods: We analyzed the expression of JAG2 mRNA and protein in normal human colon tissue cells and colorectal cancer cells. The promotive role of JAG2 in migration and invasion was tested by JAG2 siRNA and JAG2 overexpression in various colon cancer cell lines. To understand the mechanisms, we first treated HT29 cells with LY2157299, a TGF-β signaling pathway inhibitor, and Slug siRNA, to identify the cross-talk between JAG2 and EMT pathway. In addition, co-expression status of JAG2 and TGF-β-induced epithelial-mesenchymal transition (EMT) markers was analyzed. Finally, by using siRNA and proteomics technology, co-expressed proteins of JAG2 in colorectal cancer cells were identified. Results: JAG2 was abnormally expressed in colorectal cancer tissues and directly related with clinical stages. Similar to the findings in human tissues, the expression of both JAG2 mRNA and protein was significantly increased in the colorectal cancer cell lines compared with that of normal colorectal cell line CCD18-Co. Interestingly, the promotion of JAG2 in migration and invasion was independent of EMT pathway. Furthermore, we found that the expression of JAG2 was correlated with PRAF2 (PRA1 Domain Family Member 2), a protein involved in the formation of exosome-like vesicles. In the presence of PRAF2, JAG2-rich exosome promoted migration and invasion. JAG2 might regulate the migration and invasion of colon cell through PRAF2. Conclusions: This is the evidence supporting the biological function of JAG2 in migration and invasion through non-EMT-dependent pathways and also the first exploration of the role of PRAF2 in colorectal cancer cells. These findings provide the theoretical basis for potential targeted therapy against JAG2/PRAF2.


2017 ◽  
Vol 42 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Qingguo Li ◽  
Yaqi Li ◽  
Junyan Xu ◽  
Sheng Wang ◽  
Ye Xu ◽  
...  

Background: Glycolysis is considered to be the root of cancer development and progression, which involved a multi-step enzymatic reaction. Our study aimed at figuring out which glycolysis enzyme participates in the development of colorectal cancer and its possible mechanisms. Methods: We firstly screened out Aldolase B (ALDOB) by performing qRT-PCR arrays of glycolysis-related genes in five paired liver metastasis and primary colorectal tissues, and further detected ALDOB protein with immunohistochemistry in tissue microarray (TMA) consisting of 229 samples from stage I-III colorectal cancer patients. CRISPR-Cas9 method was adopted to create knock out colon cancer cell lines (LoVo and SW480) of ALDOB. The effect of ALDOB on cell proliferation and metastasis was examined in vitro using colony formation assay as well as transwell migration and invasion assay, respectively. Results: In TMA, there was 64.6% of samples demonstrated strong intensity of ALDOB. High ALDOB expression were associated with poor overall survival and disease-free survival in both univariate and multivariate regression analyses (P<0.05). In vitro functional studies of CCK-8 demonstrated that silencing ALDOB expression significantly (P<0.05) inhibited proliferation, migration and invasion of colon cancer cells. Mechanically, silencing ALDOB activated epithelial markers and repressed mesenchymal markers, indicating inactivation of ALDOB may lead to inhibition of epithelial-mesenchymal transition (EMT). Conclusion: Upregulation of ALDOB promotes colorectal cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in colorectal cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hui-Jing Chen ◽  
Yue Yu ◽  
Yan-Xia Sun ◽  
Chuan-Zhong Huang ◽  
Jie-Yu Li ◽  
...  

Id4 is one of the inhibitors of DNA-binding proteins (Id) and involved in the pathogenesis of numerous cancers. The specific mechanism underlying the Id4-mediated regulation of proliferation, invasion, and metastasis of colorectal cancer (CRC) cells is still largely unclear. In the present study, results showed CRC cells had a lower baseline Id4 expression than normal intestinal epithelial NCM460 cells. In order to explore the role of Id4 in the tumorigenicity, CRC HCT116 cells with stable Id4 expression were used, and results showed Id4 overexpression arrested the cell cycle at the G0/G1 phase, inhibited the cell proliferation and the colony formation, as well as suppressed the migration and invasion. In the in vivo model, Id4 overexpression inhibited the tumor growth and metastasis in the nude mice. Furthermore, Id4 overexpression upregulated the expression of proteins associated with cell proliferation, inhibited the PI3K/AKT pathway, and suppressed epithelial-mesenchymal transition (EMT) of HCT116 cells. Moreover, Id4 significantly decreased cytokeratin 18 (CK18) expression, but CK18 overexpression in Id4 expressing HCT116-Id4 cells rescued the activation of AKT, p-AKT, MMP2, MMP7, and E-cadherin. Collectively, our study indicated Id4 may inhibit CRC growth and metastasis through inhibiting the PI3K/AKT pathway in a CK18-dependent manner and suppressing EMT. Id4 may become a target for the treatment of CRC.


Sign in / Sign up

Export Citation Format

Share Document