Peripheral Monitoring of Traffic in Conditionally Automated Driving

Author(s):  
Jonas Radlmayr ◽  
Karin Brüch ◽  
Kathrin Schmidt ◽  
Christine Solbeck ◽  
Tristan Wehner

Conditionally automated vehicles (level 3) allow drivers to engage in visual, non-driving related tasks (NDRTs) while the automation is active. System limits require drivers to reengage in the dynamic driving task in take-over situations. If the NDRT is visually engaging, situation awareness (SA) necessary for a successful take-over can decrease. This study analyzed, if the SA of drivers increases while monitoring the surrounding traffic peripherally. A semi-transparent balloon game in the head-up display operationalized the engagement into a visual NDRT with the possibility of peripheral monitoring. In addition, participants without the possibility of monitoring due to simulated heavy fog (second group) were tested along with a third group that could monitor surroundings self-determined without a NDRT. The between-subject design included 57 participants. Results showed that self-determined monitoring leads to higher situation awareness compared to peripheral monitoring and no monitoring. This did not result in better take-over performances.

2021 ◽  
Vol 11 (1) ◽  
pp. 845-852
Author(s):  
Aleksandra Rodak ◽  
Paweł Budziszewski ◽  
Małgorzata Pędzierska ◽  
Mikołaj Kruszewski

Abstract In L3–L4 vehicles, driving task is performed primarily by automated driving system (ADS). Automation mode permits to engage in non-driving-related tasks; however, it necessitates continuous vigilance and attention. Although the driver may be distracted, a request to intervene may suddenly occur, requiring immediate and appropriate response to driving conditions. To increase safety, automated vehicles should be equipped with a Driver Intervention Performance Assessment module (DIPA), ensuring that the driver is able to take the control of the vehicle and maintain it safely. Otherwise, ADS should regain control from the driver and perform a minimal risk manoeuvre. The paper explains the essence of DIPA, indicates possible measures, and describes a concept of DIPA framework being developed in the project.


Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 277 ◽  
Author(s):  
Christina Kurpiers ◽  
Bianca Biebl ◽  
Julia Mejia Hernandez ◽  
Florian Raisch

In SAE (Society of Automotive Engineers) Level 2, the driver has to monitor the traffic situation and system performance at all times, whereas the system assumes responsibility within a certain operational design domain in SAE Level 3. The different responsibility allocation in these automation modes requires the driver to always be aware of the currently active system and its limits to ensure a safe drive. For that reason, current research focuses on identifying factors that might promote mode awareness. There is, however, no gold standard for measuring mode awareness and different approaches are used to assess this highly complex construct. This circumstance complicates the comparability and validity of study results. We thus propose a measurement method that combines the knowledge and the behavior pillar of mode awareness. The latter is represented by the relational attention ratio in manual, Level 2 and Level 3 driving as well as the controllability of a system limit in Level 2. The knowledge aspect of mode awareness is operationalized by a questionnaire on the mental model for the automation systems after an initial instruction as well as an extensive enquiry following the driving sequence. Further assessments of system trust, engagement in non-driving related tasks and subjective mode awareness are proposed.


Author(s):  
Nicole M. Corcoran ◽  
Daniel V. McGehee ◽  
T. Zachary Noonan

In 2019, industry is in the testing stages of level 4 SAE/NHTSA automated vehicles. While in testing, L4 vehicles require a safety driver to monitor the driving task at all times. These specially trained drivers must take back control if the vehicle doesn’t seem to be responding correctly to the ever-changing roadway and environment. Research suggests that monitoring the driving task can lead to a decrease in vigilance over time. Recently, Waymo publicly released takeover request and mileage data on its 2018 L4 autonomous vehicle takeover requests. From this data, which was represented in mileage, we created temporal metric which showed that there were typically 150-250 hours without a takeover request. From this we suggest that there may be a decrement in vigilance for Waymo safety drivers. While there are still many unknowns, we suggest Waymo release takeover requests in terms of time rather than mileage and provide more information on the operational design domains of these vehicles. Expanding the content of this publicly-released data could then give researchers and the public more understanding of the conditions under which safety drivers are functioning.


2019 ◽  
Vol 11 (3) ◽  
pp. 40-58 ◽  
Author(s):  
Philipp Wintersberger ◽  
Clemens Schartmüller ◽  
Andreas Riener

Automated vehicles promise engagement in side activities, but demand drivers to resume vehicle control in Take-Over situations. This pattern of alternating tasks thus becomes an issue of sequential multitasking, and it is evident that random interruptions result in a performance drop and are further a source of stress/anxiety. To counteract such drawbacks, this article presents an attention-aware architecture for the integration of consumer devices in level-3/4 vehicles and traffic systems. The proposed solution can increase the lead time for transitions, which is useful to determine suitable timings (e.g., between tasks/subtasks) for interruptions in vehicles. Further, it allows responding to Take-Over-Requests directly on handheld devices in emergencies. Different aspects of the Attentive User Interface (AUI) concept were evaluated in two driving simulator studies. Results, mainly based on Take-Over performance and physiological measurements, confirm the positive effect of AUIs on safety and comfort. Consequently, AUIs should be implemented in future automated vehicles.


Author(s):  
Frederik Schewe ◽  
Hao Cheng ◽  
Alexander Hafner ◽  
Monika Sester ◽  
Mark Vollrath

We tested whether head-movements under automated driving can be used to classify a vehicle occupant as either situation-aware or unaware. While manually cornering, an active driver’s head tilt correlates with the road angle which serves as a visual reference, whereas an inactive passenger’s head follows the g-forces. Transferred to partial/conditional automation, the question arises whether aware occupant’s head-movements are comparable to drivers and if this can be used for classification. In a driving-simulator-study (n=43, within-subject design), four scenarios were used to generate or deteriorate situation awareness (manipulation checked). Recurrent neural networks were trained with the resulting head-movements. Inference statistics were used to extract the discriminating feature, ensuring explainability. A very accurate classification was achieved and the mean side rotation-rate was identified as the most differentiating factor. Aware occupants behave more like drivers. Therefore, head-movements can be used to classify situation awareness in experimental settings but also in real driving.


Author(s):  
Noah J. Goodall

Most automobile manufacturers and several technology companies are testing automated vehicles (AVs) on public roads. While automation of the driving task is expected to reduce crashes, there is no consensus as to how safe an AV must be before it can be deployed. An AV should be at least as safe as the average driver, but national crash rates include drunk and distracted driving, meaning that an AV that crashes at the average rate is somewhere between drunk and sober. In this paper, safety benchmarks for AVs are explored from three perspectives. First, crash rates from naturalistic driving studies are used to determine the crash risk of the model (i.e., sober, rested, attentive, cautious) driver. Second, stated preference surveys in the literature are reviewed to estimate the AV risk acceptable to the public. Third, crash, injury, and fatality rates from other transportation modes are compared as baseline safety levels. A range of potential safety targets is presented as a guide for policymakers, regulators, and AV developers to assist in evaluating the safety of automated driving technologies for public use.


Author(s):  
Dengbo He ◽  
Dina Kanaan ◽  
Birsen Donmez

Driver distraction is one of the leading causes of vehicle crashes. The introduction of higher levels of vehicle control automation is expected to alleviate the negative effects of distraction by delegating the driving task to automation, thus enabling drivers to engage in non-driving-related tasks more safely. However, before fully automated vehicles are realized, drivers are still expected to play a supervisory role and intervene with the driving task if necessary while potentially having more spare capacity for engaging in non-driving-related tasks. Traditional distraction mitigation perspectives need to be shifted for automated vehicles from mainly preventing the occurrence of non-driving-related tasks to dynamically coordinating time-sharing between driving and non-driving-related tasks. In this paper, we provide a revised and expanded taxonomy of driver distraction mitigation strategies, discuss how the different strategies can be used in an automated driving context, and propose directions for future research in supporting time-sharing in automated vehicles.


2018 ◽  
Vol 1 (3) ◽  
pp. 99-106 ◽  
Author(s):  
Ryuichi Umeno ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

Purpose Level 3 automated driving, which has been defined by the Society of Automotive Engineers, may cause driver drowsiness or lack of situation awareness, which can make it difficult for the driver to recognize where he/she is. Therefore, the purpose of this study was to conduct an experimental study with a driving simulator to investigate whether automated driving affects the driver’s own localization compared to manual driving. Design/methodology/approach Seventeen drivers were divided into the automated operation group and manual operation group. Drivers in each group were instructed to travel along the expressway and proceed to the specified destinations. The automated operation group was forced to select a course after receiving a Request to Intervene (RtI) from an automated driving system. Findings A driver who used the automated operation system tended to not take over the driving operation correctly when a lane change is immediately required after the RtI. Originality/value This is a fundamental research that examined how the automated driving operation affects the driver's own localization. The experimental results suggest that it is not enough to simply issue an RtI, and it is necessary to tell the driver what kind of circumstances he/she is in and what they should do next through the HMI. This conclusion can be taken into consideration for engineers who design automatic driving vehicles.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 228 ◽  
Author(s):  
Felipe Jiménez ◽  
José Naranjo ◽  
Sofía Sánchez ◽  
Francisco Serradilla ◽  
Elisa Pérez ◽  
...  

Road vehicles include more and more assistance systems that perform tasks to facilitate driving and make it safer and more efficient. However, the automated vehicles currently on the market do not exceed SAE level 2 and only in some cases reach level 3. Nevertheless, the qualitative and technological leap needed to reach level 4 is significant and numerous uncertainties remain. In this sense, a greater knowledge of the environment is needed for better decision making and the role of the driver changes substantially. This paper proposes the combination of cooperative systems with automated driving to offer a wider range of information to the vehicle than on-board sensors currently provide. This includes the actual deployment of a cooperative corridor on a highway. It also takes into account that in some circumstances or scenarios, pre-set or detected by on-board sensors or previous communications, the vehicle must hand back control to the driver, who may have been performing other tasks completely unrelated to supervising the driving. It is thus necessary to assess the driver’s condition as regards retaking control and to provide assistance for a safe transition.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2161
Author(s):  
Martin Rudigier ◽  
Georg Nestlinger ◽  
Kailin Tong ◽  
Selim Solmaz

Automated vehicles we have on public roads today are capable of up to SAE Level-3 conditional autonomy according to the SAE J3016 Standard taxonomy, where the driver is the main responsible for the driving safety. All the decision-making processes of the system depend on computations performed on the ego vehicle and utilizing only on-board sensor information, mimicking the perception of a human driver. It can be conjectured that for higher levels of autonomy, on-board sensor information will not be sufficient alone. Infrastructure assistance will, therefore, be necessary to ensure the partial or full responsibility of the driving safety. With higher penetration rates of automated vehicles however, new problems will arise. It is expected that automated driving and particularly automated vehicle platoons will lead to more road damage in the form of rutting. Inspired by this, the EU project ESRIUM investigates infrastructure assisted routing recommendations utilizing C-ITS communications. In this respect, specially designed ADAS functions are being developed with capabilities to adapt their behavior according to specific routing recommendations. Automated vehicles equipped with such ADAS functions will be able to reduce road damage. The current paper presents the specific use cases, as well as the developed C-ITS assisted ADAS functions together with their verification results utilizing a simulation framework.


Sign in / Sign up

Export Citation Format

Share Document