Assessing the Impact of Control and Sensory Compatibility on Sickness in Virtual Environments

Author(s):  
Christopher J. Rich ◽  
Curt C. Braun

Virtual reality (VR) users are frequently limited by motion sickness-like symptoms. One factor that might influence sickness in VR is the level of control one has in a virtual environment. Reason's Sensory Conflict Theory suggested that motion sickness occurs when incompatibilities exist between four sensory inputs. It is possible that control and sensory compatibility are positively related. If this is the case, increasing control in a virtual environment should result in decreasing symptomology. To test this, the present study used the Simulator Sickness Questionnaire to measure symptomology of 163 participants after exposure to a virtual environment. Three levels of control and compatibility were assessed. It was hypothesized that the participants with control and compatible sensory information would experience fewer symptoms than participants in either the control/incompatible or no control/incompatible conditions. Although significant main effects were found for both gender and condition, the findings were opposite of those hypothesized. Possible explanations for this finding are discussed.

2009 ◽  
Vol 8 (4) ◽  
pp. 169-176 ◽  
Author(s):  
David M. Flinton ◽  
Nick White

AbstractBackground:Virtual environments in medical education are becoming increasingly popular as a learning tool. However, there is a large amount of evidence linking these systems to adverse effects that mimic motion sickness. It is also proposed that the efficacy of such systems is affected by how well they engage the user, which is often referred to as presence.Purpose:This primary purpose of this study was to look at the side effects experienced and presence in the Virtual Environment for Radiotherapy Training (VERT) system which has recently been introduced.Method:A pre-VERT questionnaire was given to 84 subjects to ascertain general health of the subjects. The simulator sickness questionnaire was utilised to determine the side effects experienced, whereas the igroup presence questionnaire was used to measure presence. Both questionnaires were given immediately after use of the VERT system.Results:The majority of symptoms were minor; the two most commonly reported symptoms relating to ocular issues. No relationship was seen between simulator sickness and presence although subjects with a higher susceptibility to travel sickness had reported higher levels of disorientation and nausea. There was also a decrease in involvement with the system in subjects with a higher susceptibility to travel sickness.


2021 ◽  
Vol 10 (5) ◽  
pp. 3546-3551
Author(s):  
Tamanna Nurai

Cybersickness continues to become a negative consequence that degrades the interface for users of virtual worlds created for Virtual Reality (VR) users. There are various abnormalities that might cause quantifiable changes in body awareness when donning an Head Mounted Display (HMD) in a Virtual Environment (VE). VR headsets do provide VE that matches the actual world and allows users to have a range of experiences. Motion sickness and simulation sickness performance gives self-report assessments of cybersickness with VEs. In this study a simulator sickness questionnaire is being used to measure the aftereffects of the virtual environment. This research aims to answer if Immersive VR induce cybersickness and impact equilibrium coordination. The present research is formed as a cross-sectional observational analysis. According to the selection criteria, a total of 40 subjects would be recruited from AVBRH, Sawangi Meghe for the research. With intervention being used the experiment lasted 6 months. Simulator sickness questionnaire is used to evaluate the after-effects of a virtual environment. It holds a single period for measuring motion sickness and evaluation of equilibrium tests were done twice at exit and after 10 mins. Virtual reality being used in video games is still in its development. Integrating gameplay action into the VR experience will necessitate a significant amount of study and development. The study has evaluated if Immersive VR induce cybersickness and impact equilibrium coordination. To measure cybersickness, numerous scales have been developed. The essence of cybersickness has been revealed owing to work on motion sickness in a simulated system.


2001 ◽  
Vol 13 (6) ◽  
pp. 588-593 ◽  
Author(s):  
Toyomi Fujita ◽  
◽  
Masanori Idesawa

As virtual environment (VE) technology has become more disseminated, harmful physiological influences on users of VE have been reported such as simulator sickness and motion sickness – collectively called VE sickness. For VE safety and comfort, we note a new dynamic visual illusion, called ""rotational dynamic illusion"". Several psychophysical experiments measuring head movement in illusion observation suggest that perceptive features of rotational dynamic illusion are closely related to balance, which causes VE sickness. These features will be effective in realizing VE safety and comfort and trigger advances in VE technology development.


Perception ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 521-530 ◽  
Author(s):  
Shaziela Ishak ◽  
Andrea Bubka ◽  
Frederick Bonato

Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore “blackout” goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit’s interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.


2008 ◽  
Vol 17 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Frederick Bonato ◽  
Andrea Bubka ◽  
Stephen Palmisano ◽  
Danielle Phillip ◽  
Giselle Moreno

The optic flow patterns generated by virtual reality (VR) systems typically produce visually induced experiences of self-motion (vection). While this vection can enhance presence in VR, it is often accompanied by a variant of motion sickness called simulator sickness (SS). However, not all vection experiences are the same. In terms of perceived heading and/or speed, visually simulated self-motion can be either steady or changing. It was hypothesized that changing vection would lead to more SS. Participants viewed an optic flow pattern that either steadily expanded or alternately expanded and contracted. In one experiment, SS was measured pretreatment and after 5 min of viewing using the Simulator Sickness Questionnaire. In a second experiment employing the same stimuli, vection onset and magnitude were measured using a computer-interfaced slide indicator. The steadily expanding flow pattern, compared to the expanding and contracting pattern, led to: 1) significantly less SS, 2) lower subscores for nausea, oculomotor, and disorientation symptoms, 3) more overall vection magnitude, and 4) less changing vection. Collectively, these results suggest that changing vection exacerbates SS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Géraldine Fauville ◽  
Anna C. M. Queiroz ◽  
Erika S. Woolsey ◽  
Jonathan W. Kelly ◽  
Jeremy N. Bailenson

AbstractResearch about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.


2014 ◽  
Vol 23 (1) ◽  
pp. 33-50 ◽  
Author(s):  
Gabor Aranyi ◽  
Sid Kouider ◽  
Alan Lindsay ◽  
Hielke Prins ◽  
Imtiaj Ahmed ◽  
...  

The performance of current graphics engines makes it possible to incorporate subliminal cues within virtual environments (VEs), providing an additional way of communication, fully integrated with the exploration of a virtual scene. In order to advance the application of subliminal information in this area, it is necessary to explore in the psychological literature how techniques previously reported as rendering information subliminal can be successfully implemented in VEs. Previous literature has also described the effects of subliminal cues as quantitatively modest, which raises the issue of their inclusion in practical tasks. We used a 3D rendering engine (Unity3D) to implement a masking paradigm within the context of a realistic scene and a familiar (kitchen) environment. We report significant effects of subliminal cueing on the selection of objects in a virtual scene, demonstrating the feasibility of subliminal cueing in VEs. Furthermore, we show that multiple iterations of masked objects within a trial, as well as the speeding of selection choices, can substantially reinforce the impact of subliminal cues. This is consistent with previous findings suggesting that the effect of subliminal stimuli fades rapidly. We conclude by proposing, as part of further work, possible mechanisms for the inclusion of subliminal cueing in intelligent interfaces to maximize their effects.


2019 ◽  
Vol 25 (Suppl. 1-2) ◽  
pp. 60-71 ◽  
Author(s):  
Nikolaus E. Wolter ◽  
Karen A. Gordon ◽  
Jennifer L. Campos ◽  
Luis D. Vilchez Madrigal ◽  
David D. Pothier ◽  
...  

Introduction: To determine the impact of a head-referenced cochlear implant (CI) stimulation system, BalanCI, on balance and postural control in children with bilateral cochleovestibular loss (BCVL) who use bilateral CI. Methods: Prospective, blinded case-control study. Balance and postural control testing occurred in two settings: (1) quiet clinical setting and (2) immersive realistic virtual environment (Challenging Environment Assessment Laboratory [CEAL], Toronto Rehabilitation Institute). Postural control was assessed in 16 and balance in 10 children with BCVL who use bilateral CI, along with 10 typically developing children. Children with neuromotor, cognitive, or visual deficits that would prevent them from performing the tests were excluded. Children wore the BalanCI, which is a head-mounted device that couples with their CIs through the audio port and provides head-referenced spatial information delivered via the intracochlear electrode array. Postural control was measured by center of pressure (COP) and time to fall using the WiiTM (Nintendo, WA, USA) Balance Board for feet and the BalanCI for head, during the administration of the Modified Clinical Test of Sensory Interaction in Balance (CTSIB-M). The COP of the head and feet were assessed for change by deviation, measured as root mean square around the COP (COP-RMS), rate of deviation (COP-RMS/duration), and rate of path length change from center (COP-velocity). Balance was assessed by the Bruininks-Oseretsky Test of Motor Proficiency 2, balance subtest (BOT-2), specifically, BOT-2 score as well as time to fall/fault. Results: In the virtual environment, children demonstrated more stable balance when using BalanCI as measured by an improvement in BOT-2 scores. In a quiet clinical setting, the use of BalanCI led to improved postural control as demonstrated by significant reductions in COP-RMS and COP-velocity. With the use of BalanCI, the number of falls/faults was significantly reduced and time to fall increased. Conclusions: BalanCI is a simple and effective means of improving postural control and balance in children with BCVL who use bilateral CI. BalanCI could potentially improve the safety of these children, reduce the effort they expend maintaining balance and allow them to take part in more complex balance tasks where sensory information may be limited and/or noisy.


1996 ◽  
Vol 5 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Mark R. Mine ◽  
Hans Weber

Oth law of model dynamics: In a finite (and usually very short) amount of time, users of a graphics system will generate a model that shall bring said system to its knees. The purpose of this paper is to discuss our experiences with the impact of megamodels on interactive virtual environments. We consider a megamodel to be any model that causes the Oth law of model dynamics to come into effect. We will demonstrate how working with megamodels quickly reveals the limitations of the graphics hardware and software being used to support the virtual environment. We will give examples, based upon our experiences on the Architectural Walkthrough Project here at the University of North Carolina at Chapel Hill (UNC), of the kinds of extra effort required to overcome these limitations.


Sign in / Sign up

Export Citation Format

Share Document