scholarly journals Viscoelastic behavior of a casing material and its utilization in premium connections in high-temperature gas wells

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881745 ◽  
Author(s):  
Ying Zhang ◽  
Zhanghua Lian ◽  
Mi Zhou ◽  
Tiejun Lin

At the high or extra-high temperatures in a natural gas oilfield, where the premium connection is employed by casing, gas leakage in the wellbore is always detected after several years of gas production. As the viscoelastic material’s mechanical properties change with time and temperature, the relaxation of the contact pressure on the connection sealing surface is the main reason for the gas leakage in the high-temperature gas well. In this article, tension-creep experiments were conducted. Furthermore, a constitutive model of the casing material was established by the Prony series method. Moreover, the Prony series’ shift factor was calculated to study the thermo-rheological behavior of the casing material ranging from 120°C to 300°C. A linear viscoelastic model was implemented in ABAQUS, and the simulation results are compared to our experimental data to validate the methodology. Finally, the viscoelastic finite element model is applied to predict the relaxation of contact pressure on the premium connections’ sealing surface versus time under different temperatures. And, the ratio of the design contact pressure and the intending gas sealing pressure is recommended for avoiding the premium connections failure in the high-temperature gas well.

2013 ◽  
Vol 700 ◽  
pp. 213-216
Author(s):  
Ling Feng Li

In natural gas production engineering for high-temperature gas well, material selection and sizes optimization of casing material are one of the important phases. This paper presents the effect of high temperature on material strength of casing, performance matching requirements of high-strength material, sizes optimization of casing material for high-temperature gas well and examples for application.By testing, the study above is good and easy for on-the-spot application.


2010 ◽  
Author(s):  
Walter Nunez Garcia ◽  
Ricardo Solares ◽  
Jairo Alonso Leal Jauregui ◽  
Jorge E. Duarte ◽  
Alejandro Chacon ◽  
...  

Author(s):  
Gael Chevallier ◽  
Franck Renaud ◽  
Jean-Luc Dion

Brake squeal remains a widespread cause for discomfort in automobiles. Manufacturers overcome this problem by adding damping materials in their systems. The purpose of this work is to take into account the damping in the modeling. As the materials exhibit a viscoelastic behavior, the authors chose to model the damping with the Generalized Maxwell model. Moreover, the authors have tested their method on a detailed Finite Element-model of a brake system. To compute the complex poles of the model, the authors have established a state-space formulation of the viscoelastic model with a new assumption that allows one to reduce the number of states. Making the computation on the whole model is rather difficult due to the number of Degrees Of Freedom, the model is thus reduced on a basis constituted with the eigenvectors of the undamped model. Several results are also presented and discussed as the observed phenomena are rather different from the results obtained with undamped systems.


2013 ◽  
Vol 703 ◽  
pp. 143-146
Author(s):  
Ling Feng Li

Analysis on casing size and steel grade and application in high-temperature high-pressure gas wells are important in natural gas production engineering. This paper presents the standard casing size series, casing steel grade standard and code, types of casing steel grade, main problems in high-temperature high-pressure gas wells, using casing material suitable as solving means for high-temperature high-pressure gas well and application. For application, the study above is good and easy for on-the-spot application.


Author(s):  
Liang Li ◽  
Jijun Zhang ◽  
Junfang Zheng ◽  
Dongliang Zhang ◽  
Xiaoning Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document