scholarly journals Application of fiber-reinforced concrete lining for fault-crossing tunnels in meizoseismal area to improving seismic performance

2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094402
Author(s):  
Dong An ◽  
Zheng Chen ◽  
Linghan Meng ◽  
Guangyao Cui

The fault-crossing tunnel in meizoseismal area is directly subjected to strong ground motion, which leads to the failure of the tunnel lining. In order to improve the seismic safety of tunnel, fiber-reinforced concrete is applied to tunnel lining in this article. Taking the section of Zhongyi tunnel crossing Wanlong fault as an example, seismic performance of fiber-reinforced concrete tunnel lining was studied by finite difference numerical calculation software FLAC3D. The seismic displacement, stress response, and side wall convergence of secondary lining structures which are plain concrete, steel fiber-reinforced concrete, and steel-basalt hybrid fiber-reinforced concrete were comparatively analyzed. Moreover, the safety factor of each lining structure was investigated with the present numerical model. With the obtained data, seismic performance of steel-basalt hybrid fiber-reinforced concrete secondary lining is better than that of steel fiber-reinforced concrete secondary lining. The results may provide references for seismic design of fault-crossing tunnels in meizoseismal area.

2013 ◽  
Vol 747 ◽  
pp. 773-776 ◽  
Author(s):  
Rodsin Kittipoom ◽  
Sappakittipakorn Manote ◽  
Sukontasukkul Piti

The principal aim of this research is to improve the seismic performance of non-ductile reinforced columns using fiber reinforced concrete (FRC) by mixing steel fiber into the concrete. Two reinforced concrete columns 200mm x 300mm in cross-section with a height of 1250 mm were tested under cyclic lateral loading. The first specimen was casted using normal strength concrete of 24 MPa and the second specimens were also casted using similar concrete with similar strength but the steel fiber of 1% was added to the concrete in the plastic hinge region. The axial load for all specimens was 300 kN and kept constant during the test. The test results showed that the use of FRC in the plastic hinge region could significantly improve column displacement ductility. The maximum drift at lateral strength loss at 3.7% for non-ductile column could increase to 6% in FRC column. It is evident that the cracks in FRC column are much smaller and more widely spread in the plastic hinge region and hence the plastic hinge could be able to rotate without lateral strength being compromised. In FRC column, concrete spalling was observed in a very high drift (5%) and bar buckling occurred at around 6% drift whilst in non-ductile column concrete spalling and bar buckling occurred at 2.5% and 3% drift respectively. It was evident that the use of steel fiber in non-ductile columns could significantly improve seismic performance of the column.


2008 ◽  
Vol 400-402 ◽  
pp. 391-394
Author(s):  
Ming Hui Wei ◽  
Yi Ping Liu ◽  
Li Qun Tang ◽  
Xiao Qing Huang

Flexure behaviors of plain concrete (PC), steel fiber reinforced concrete (SFRC), polymer modified concrete (PMC), steel fiber reinforced and polymer modified concrete (SFRPMC) and hybrid fiber reinforced concrete (HFRC) with steel fiber and polymer fiber are studied in this paper, flexure tests were carried out and flexure strengths of the five different materials with different mixture ratios were measured and compared. Flexure ductility of PC, PMC, SFRC, and SFRPMC were calculated and compared. In addition, considering performance and cost estimation comprehensively, HFRC is recommended, preliminary tests show that HFRC may be one of the potential materials for bridge pavement.


Sign in / Sign up

Export Citation Format

Share Document