scholarly journals Analysis method of the cavitation vibration signals in poppet valve based on EEMD

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Beibei Li ◽  
Qiao Zhao ◽  
Huaiyi Li ◽  
Xiumei Liu ◽  
Jichao Ma ◽  
...  

To study the vibration characteristics of the poppet valve induced by cavitation, the signal analysis method based on the ensemble empirical mode decomposition (EEMD) method was studied experimentally. The component induced by cavitation was separated from the vibration signals through the EEMD method. The results show that the IMF2 component has the largest amplitude and energy of all components. The root mean square (RMS) value, peak value of marginal spectrum, and center frequency of marginal spectrum of the IMF2 component were studied in detail. The RMS value and the peak value of the marginal spectrum decrease with a decrease of cavitation intensity. The center frequency of marginal spectrum is between 12 kHz and 20 kHz, and the center frequency first increases and then decreases with a decrease of cavitation intensity. The change rate of the center frequency also decreases with an increase of inlet pressure.

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1519 ◽  
Author(s):  
Dengyun Wu ◽  
Jianwen Wang ◽  
Hong Wang ◽  
Hongxing Liu ◽  
Lin Lai ◽  
...  

Bearing is a key component of satellite inertia actuators such as moment wheel assemblies (MWAs) and control moment gyros (CMGs), and its operating state is directly related to the performance and service life of satellites. However, because of the complexity of the vibration frequency components of satellite bearing assemblies and the small loading, normal running bearings normally present similar fault characteristics in long-term ground life experiments, which makes it difficult to judge the bearing fault status. This paper proposes an automatic fault diagnosis method for bearings based on a presented indicator called the characteristic frequency ratio. First, the vibration signals of various MWAs were picked up by the bearing vibration test. Then, the improved ensemble empirical mode decomposition (EEMD) method was introduced to demodulate the envelope of the bearing signals, and the fault characteristic frequencies of the vibration signals were acquired. Based on this, the characteristic frequency ratio for fault identification was defined, and a method for determining the threshold of fault judgment was further proposed. Finally, an automatic diagnosis process was proposed and verified by using different bearing fault data. The results show that the presented method is feasible and effective for automatic monitoring and diagnosis of bearing faults.


2013 ◽  
Vol 300-301 ◽  
pp. 344-350 ◽  
Author(s):  
Zhou Wan ◽  
Xing Zhi Liao ◽  
Xin Xiong ◽  
Jin Chuan Han

For empirical mode decomposition (EMD) of Hilbert-Huang transform (HHT) exists the problem of mode mixing. An analysis method based on ensemble empirical mode decomposition (EEMD) is proposed to apply to fault diagnosis of rolling bearing. This paper puts forward, after signal pretreatment, applying EEMD method to acquire the intrinsic mode function (IMF) of fault signal. Then according to correlation coefficient for IMFs and the signal before decomposing by EEMD method, some redundant low frequency IMFs produced in the process of decomposition can be eliminated, then the effective IMF components are selected to perform a local Hilbert marginal spectrum analysis, then fault characteristics are extracted. Through the vibration analysis of inner-race fault bearing it shows that this method can be effectively applied to extract fault characteristics of rolling bearing.


2014 ◽  
Vol 687-691 ◽  
pp. 3806-3808
Author(s):  
Wei Chang Xu ◽  
Tao Tang ◽  
Ji Fang Liu ◽  
Wei Huang

Dynamical properties of mechanical systems can be obtained with the vibration signals from the systems. However, for the influence of noises, it is difficult to accurately acquire the features. Therefore, de-noising operation is significant for vibration signal in the practical engineering. In order to resolve this problem, the Ensemble Empirical Mode Decomposition (EEMD) method is introduced to try to eliminate noises from the analyzed signal. At first, the theory of the method is illustrated, which included adding white noises, EMD for the signal and calculating the mean of the intrinsic mode function. On this base, the signal which contains several harmonic components with white noise is processed by EEMD. As the result shown, the random noise can be effectively removed; moreover, the harmonic components can be accurately separated. And these improve that the EEMD is an effective method for the de-noising.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Xiong ◽  
Shulin Tian ◽  
Chenglin Yang

This paper presents a novel fault diagnosis method for analog circuits using ensemble empirical mode decomposition (EEMD), relative entropy, and extreme learning machine (ELM). First, nominal and faulty response waveforms of a circuit are measured, respectively, and then are decomposed into intrinsic mode functions (IMFs) with the EEMD method. Second, through comparing the nominal IMFs with the faulty IMFs, kurtosis and relative entropy are calculated for each IMF. Next, a feature vector is obtained for each faulty circuit. Finally, an ELM classifier is trained with these feature vectors for fault diagnosis. Via validating with two benchmark circuits, results show that the proposed method is applicable for analog fault diagnosis with acceptable levels of accuracy and time cost.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2014 ◽  
Vol 548-549 ◽  
pp. 369-373
Author(s):  
Yuan Cheng Shi ◽  
Yong Ying Jiang ◽  
Hai Feng Gao ◽  
Jia Wei Xiang

The vibration signals of rolling element bearings are non-linear and non-stationary and the corresponding fault features are difficult to be extracted. EEMD (Ensemble empirical mode decomposition) is effective to detect bearing faults. In the present investigation, MEEMD (Modified EEMD) is presented to diagnose the outer and inner race faults of bearings. The original vibration signals are analyzed using IMFs (intrinsic mode functions) extracted by MEEMD decomposition and Hilbert spectrum in the proposed method. The numerical and experimental results of the comparison between MEEMD and EEMD indicate that the proposed method is more effective to extract the fault features of outer and inner race of bearings than EEMD.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 704
Author(s):  
Daniel Soares de Alcantara ◽  
Pedro Paulo Balestrassi ◽  
José Henrique Freitas Gomes ◽  
Carlos Alberto Carvalho Castro

Continuous drive friction welding is a solid-state welding process that has been experimentally proven to be a fast and reliable method. This is a complex process; deformations in the viscosity of a material alter the friction between the surfaces of the pieces. All these dynamics cause changes in the vibration signals; the interpretation of these signals can reveal important information. The vibration signals generated during the friction and forging stages are measured on the stationary part of the structure to determine the influence of the manipulated variables on the time domain statistical characteristics (root mean square, peak value, crest factor, and kurtosis). In the frequency domain, empirical mode decomposition is used to characterize frequencies. It was observed that it is possible to identify the effects of the manipulated variables on the calculated statistical characteristics. The results also indicate that the effect of manipulated variables is stronger on low-frequency signals.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


Sign in / Sign up

Export Citation Format

Share Document