scholarly journals Underwater navigation using visual markers in the context of intervention missions

2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983896 ◽  
Author(s):  
Arturo Gomez Chavez ◽  
Christian A Mueller ◽  
Tobias Doernbach ◽  
Andreas Birk

Intervention missions, that is, underwater manipulation tasks, for example, in the context of oil-&-gas production, require a high amount of precise, robust navigation. In this article, we describe the use of an advanced vision system suited for deep-sea operations, which in combination with artificial markers on target structures like oil-&-gas production-Christmas-trees significantly boosts navigation performance. The system is validated in two intensive field tests running off the shore of Marseille, France. In the experiments, a commercial remotely operated vehicle equipped with the system and a mock-up structure with an oil-&-gas production panel is used to evaluate the navigation performance.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 648
Author(s):  
Angela Mazzeo ◽  
Jacopo Aguzzi ◽  
Marcello Calisti ◽  
Simonepietro Canese ◽  
Fabrizio Vecchi ◽  
...  

The collection of delicate deep-sea specimens of biological interest with remotely operated vehicle (ROV) industrial grippers and tools is a long and expensive procedure. Industrial grippers were originally designed for heavy manipulation tasks, while sampling specimens requires dexterity and precision. We describe the grippers and tools commonly used in underwater sampling for scientific purposes, systematically review the state of the art of research in underwater gripping technologies, and identify design trends. We discuss the possibility of executing typical manipulations of sampling procedures with commonly used grippers and research prototypes. Our results indicate that commonly used grippers ensure that the basic actions either of gripping or caging are possible, and their functionality is extended by holding proper tools. Moreover, the approach of the research status seems to have changed its focus in recent years: from the demonstration of the validity of a specific technology (actuation, transmission, sensing) for marine applications, to the solution of specific needs of underwater manipulation. Finally, we summarize the environmental and operational requirements that should be considered in the design of an underwater gripper.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7341
Author(s):  
Chunhao Liu ◽  
Jinjia Guo ◽  
Ye Tian ◽  
Chao Zhang ◽  
Kai Cheng ◽  
...  

In recent years, the investigation and exploitation of hydrothermal region and polymetallic mineral areas has become a hot topic. The emergence of underwater vehicle platforms has made it possible for new chemical sensors to be applied in marine in-situ detection. Laser-induced breakdown spectroscopy (LIBS), with its advantages of rapid real-time analysis, sampling without pretreatment, simultaneous multi-element detection and stand-off detection, has great potential in marine applications. In this paper, a newly more compact and lighter underwater LIBS system based on the LIBSea system named LIBSea II was developed and tested both in the laboratory and sea trials. The system consists of a Nd:YAG single-pulse laser at 1064 nm, a fiber spectrometer, optical layout, a power supply module and an internal environment sensor. The system is encapsulated in a pressure vessel (Φ 190 mm × L 588 mm) with an optical window on the end cap. Experimental parameters of the system including laser energy and delay time were firstly optimized in the laboratory. Then, field test of the system in nearshore was performed with various samples, including pure metal and alloy samples as well as a manganese nodule sample from deep sea, to verify the detection performance of the LIBSea II system. In 2019, the system was deployed on a remotely operated vehicle (ROV) of Haima for deep sea trial, and atomic lines of K, Na, Ca and strong molecular bands of CaOH from a carbonate rock sample were obtained for the first time at depths of 1400 m. These results show that the LIBSea II system has great potential to be used in deep-sea geological exploration.


2021 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Yu-Gang Ren ◽  
Lei Yang ◽  
Yan-Jun Liu ◽  
Bao-Hua Liu ◽  
Kai-Ben Yu ◽  
...  

Due to the need for accurate exploration of deep-sea scientific research, drilling techniques by combining the operational advantages of the Jiaolong manned submersible is considered one of the most feasible methods for deep-sea bedrock drilling. Based on deep sea bedrock cutting model and discrete element simulation, as well as efficient drilling as the design criterion, the development of a deep sea 7000 m electromechanical coring apparatus was carried out. The outstanding feature of this technology is that the bit load produced by the drill pressure is usually within the range 100–400 N while the recommended load for diamond drilling is 1–3 KN or even more. Therefore, searching for the drilling bits that can drill in extremely hard formations with minimal load and acceptable rates of penetration and rotary speed is the necessary step to prove the feasibility of electromechanical deep-sea drilling technology. A test has been designed and constructed to examine three types of drill bits. The results of experiments show that the new low-load polycrystalline diamond compact (PDC) bit has the highest penetration length of 138 mm/15 min under a 300 N load and 250 rpm rotary speed. Finally, field tests with the Jiaolong submersible were used to conduct deep sea experiments and verify the load model, which provides theoretical and technical data on the use of a low-load core sampling drill developed specifically for a deep sea submersible.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


2020 ◽  
Author(s):  
◽  
Moses Thiong'o

The oceans make up about 70% of the earth’s surface and serve as habitats for many deep and shallow creatures. In depths of about 50 meters and more, deep-sea corals and sponges occur mostly along seamounts, continental margins, undersea canyons and ridges. They, deep-sea corals and sponges, play a key role in supporting the health of the ocean as they preserve the biodiversity and long-term sustainability of commercial and recreational fish species. With the many benefits that are attached to deep-sea corals and sponges, the Deep-Sea Corals and Research Technology Program (DSCRTP) has been collecting coral and sponge location data from hundreds of remotely operated vehicle (ROV) surveys. However, DSCRTP does not have a spatial representation of the area covered by each ROV while searching for corals and sponges in the deep-sea. A spatial representation would provide critical information to researchers and managers to understand where a survey for corals and sponges has happened, and where a survey is yet to be done in the deep-sea. Therefore, the goal of this study is to create a spatial representation of the ROV surveys that have been collected in Monterey Bay and Hawaii sections of the deep-sea.


2017 ◽  
Vol 10 (1) ◽  
pp. 37-47
Author(s):  
Qingsha Zhou ◽  
Kun Huang ◽  
Yongchun Zhou

Background: The western Sichuan gas field belongs to the low-permeability, tight gas reservoirs, which are characterized by rapid decline in initial production of single-well production, short periods of stable production, and long periods of late-stage, low-pressure, low-yield production. Objective: It is necessary to continue pursuing the optimization of transportation processes. Method: This paper describes research on mixed transportation based on simplified measurements with liquid-based technology and the simulation of multiphase processes using the PIPEPHASE multiphase flow simulation software to determine boundary values for the liquid carrying process. Conclusion: The simulation produced several different recommendations for the production and maximum multiphase distance along with difference in elevation. Field tests were then conducted to determine the suitability of mixed transportation in western Sichuan, so as to ensure smooth progress with fluid metering, optimize the gathering process in order to achieve stable and efficient gas production, and improve the economic benefits of gas field development.


2020 ◽  
Vol 74 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Wangquan Ye ◽  
Jinjia Guo ◽  
Nan Li ◽  
Fujun Qi ◽  
Kai Cheng ◽  
...  

Depth profiling investigation plays an important role in studying the dynamic processes of the ocean. In this paper, a newly developed hyphenated underwater system based on multi-optical spectrometry is introduced and used to measure seawater spectra at different depths with the aid of a remotely operated vehicle (ROV). The hyphenated system consists of two independent compact deep-sea spectral instruments, a deep ocean compact autonomous Raman spectrometer and a compact underwater laser-induced breakdown spectroscopy system for sea applications (LIBSea). The former was used to take both Raman scattering and fluorescence of seawater, and the LIBS signal could be recorded with the LIBSea. The first sea trial of the developed system was taken place in the Bismarck Sea, Papua New Guinea, in June 2015. Over 4000 multi-optical spectra had been captured up to the diving depth about 1800 m at maximum. The depth profiles of some ocean parameters were extracted from the captured joint Raman–fluorescence and LIBS spectra with a depth resolution of 1 m. The concentrations of [Formula: see text] and the water temperatures were measured using Raman spectra. The fluorescence intensities from both colored dissolved organic matter (CDOM) and chlorophyll were found to be varied in the euphotic zone. With LIBS spectra, the depth profiles of metallic elements were also obtained. The normalized intensity of atomic line Ca(I) extracted from LIBS spectra raised around the depth of 1600 m, similar to the depth profile of CDOM. This phenomenon might be caused by the nonbuoyant hydrothermal plumes. It is worth mentioning that this is the first time Raman and LIBS spectroscopy have been applied simultaneously to the deep-sea in situ investigations.


2012 ◽  
Vol 46 (1) ◽  
pp. 63-82 ◽  
Author(s):  
Geoffrey Carton ◽  
J. C. King ◽  
R. Josh Bowers

AbstractDevelopment of methods and technologies to characterize sites with underwater military munitions (UWMM) and respond to UWMM where the risks posed to human health or the environment or explosive hazards are unacceptable is underway. Department of Defense Military Munitions Sea Disposal Site Hawaii (HI-06), referred to locally as Ordnance Reef, is off Oahu’s leeward coast. This site has become the focal point for research on UWMM. Past studies found that the site presents no immediate danger to public safety. The location and water depth at this site present advantages for UWMM research and development.Promising technologies demonstrated at Ordnance Reef (HI-06) include those for munitions recovery, at-sea demilitarization, nondestructive testing, and explosives detection. Studies on fate and transport of munitions-related compounds and corrosion are ongoing.Among these technologies are the Remotely Operated Underwater Munitions Recovery System (ROUMRS) and the Explosive Hazard Demilitarization System (EHDS). Both are assemblages of commercial off-the-shelf components, and each is housed in a standard 6-m International Organization for Standardization (ISO) shipping container and can be operated on a barge.ROUMRS consists of a remotely operated vehicle, manipulators, an interface between a precision GPS, and underwater navigation equipment used during recovery of UWMM. The system also transports recovered UWMM for treatment. The EHDS consists of a portable X-ray unit to allow positive identification of recovered munitions, remotely operated wet band saws to cut recovered munitions to expose their explosive fill, and low-temperature ovens to treat the exposed explosives, making the remaining material safe for recycling.


Author(s):  
Muthukkumar S. Kadavasal ◽  
Abhishek Seth ◽  
James H. Oliver

A multi modal teleoperation interface is introduced featuring an integrated virtual reality based simulation augmented by sensors and image processing capabilities on-board the remotely operated vehicle. The proposed virtual reality interface fuses an existing VR model with live video feed and prediction states, thereby creating a multi modal control interface. Virtual reality addresses the typical limitations of video-based teleoperation caused by signal lag and limited field of view thereby allowing the operator to navigate in a continuous fashion. The vehicle incorporates an on-board computer and a stereo vision system to facilitate obstacle detection. A vehicle adaptation system with a priori risk maps and real state tracking system enables temporary autonomous operation of the vehicle for local navigation around obstacles and automatic re-establishment of the vehicle’s teleoperated state. As both the vehicle and the operator share absolute autonomy in stages, the operation is referred to as mixed autonomous. Finally, the system provides real time update of the virtual environment based on anomalies encountered by the vehicle. The system effectively balances the autonomy between human and on board vehicle intelligence. The stereo vision based obstacle avoidance system is initially implemented on video based teleoperation architecture and experimental results are presented. The VR based multi modal teleoperation interface is expected to be more adaptable and intuitive when compared to other interfaces.


Zootaxa ◽  
2011 ◽  
Vol 2902 (1) ◽  
pp. 59
Author(s):  
CHAD L. WIDMER

The hydroid and early medusa stages of the deep sea hydrozoan jellyfish Earleria purpurea (Hydrozoa: Mitrocomidae) are described. Mature medusae were collected from the Monterey Bay submarine canyon near Monterey, California, USA utilizing a remotely operated vehicle and returned to the laboratory for culturing. In vitro fertilized eggs developed into free-swimming planulae larvae that settled and metamorphosed into benthic hydroid colonies consisting of feeding hydranths and medusa producing gonangia. Newly released medusae were grown to maturity and placed on educational display at the Monterey Bay Aquarium. The hydranths and gonangia were compared and found to be distinct from those of E. corachloeae the only other member of the Genus Earleria with a described life cycle.


Sign in / Sign up

Export Citation Format

Share Document