Saving the Perruchet effect: A role for the strength of the association in associative learning

2018 ◽  
Vol 72 (6) ◽  
pp. 1379-1386
Author(s):  
Arnaud Destrebecqz ◽  
Michaël Vande Velde ◽  
Estibaliz San Anton ◽  
Axel Cleeremans ◽  
Julie Bertels

In a partial reinforcement schedule where a cue repeatedly predicts the occurrence of a target in consecutive trials, reaction times to the target tend to decrease in a monotonic fashion, while participants’ expectancies for the target decrease at the same time. This dissociation between reaction times and expectancies—the so-called Perruchet effect—challenges the propositional view of learning, which posits that human conditioned responses result from conscious inferences about the relationships between events. However, whether the reaction time pattern reflects the strength of a putative cue-target link, or only non-associative processes, such as motor priming, remains unclear. To address this issue, we implemented the Perruchet procedure in a two-choice reaction time task and compared reaction time patterns in an Experimental condition, in which a tone systematically preceded a visual target, and in a Control condition, in which the onset of the two stimuli were uncoupled. Participants’ expectancies regarding the target were recorded separately in an initial block. Reaction times decreased with the succession of identical trials in both conditions, reflecting the impact of motor priming. Importantly, reaction time slopes were steeper in the Experimental than in the Control condition, indicating an additional influence of the associative strength between the two stimuli. Interestingly, slopes were less steep for participants who showed the gambler’s fallacy in the initial block. In sum, our results suggest the mutual influences of motor priming, associative strength, and expectancies on performance. They are in line with a dual-process model of learning involving both a propositional reasoning process and an automatic link-formation mechanism.

GeroPsych ◽  
2011 ◽  
Vol 24 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Philippe Rast ◽  
Daniel Zimprich

In order to model within-person (WP) variance in a reaction time task, we applied a mixed location scale model using 335 participants from the second wave of the Zurich Longitudinal Study on Cognitive Aging. The age of the respondents and the performance in another reaction time task were used to explain individual differences in the WP variance. To account for larger variances due to slower reaction times, we also used the average of the predicted individual reaction time (RT) as a predictor for the WP variability. Here, the WP variability was a function of the mean. At the same time, older participants were more variable and those with better performance in another RT task were more consistent in their responses.


2021 ◽  
Vol 11 (5) ◽  
pp. 669
Author(s):  
Paweł Krukow ◽  
Małgorzata Plechawska-Wójcik ◽  
Arkadiusz Podkowiński

Aggrandized fluctuations in the series of reaction times (RTs) are a very sensitive marker of neurocognitive disorders present in neuropsychiatric populations, pathological ageing and in patients with acquired brain injury. Even though it was documented that processing inconsistency founds a background of higher-order cognitive functions disturbances, there is a vast heterogeneity regarding types of task used to compute RT-related variability, which impedes determining the relationship between elementary and more complex cognitive processes. Considering the above, our goal was to develop a relatively new assessment method based on a simple reaction time paradigm, conducive to eliciting a controlled range of intra-individual variability. It was hypothesized that performance variability might be induced by manipulation of response-stimulus interval’s length and regularity. In order to verify this hypothesis, a group of 107 healthy students was tested using a series of digitalized tasks and their results were analyzed using parametric and ex-Gaussian statistics of RTs distributional markers. In general, these analyses proved that intra-individual variability might be evoked by a given type of response-stimulus interval manipulation even when it is applied to the simple reaction time task. Collected outcomes were discussed with reference to neuroscientific concepts of attentional resources and functional neural networks.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Bartosz Helfer ◽  
Stefanos Maltezos ◽  
Elizabeth Liddle ◽  
Jonna Kuntsi ◽  
Philip Asherson

Abstract Background. We investigated whether adults with attention-deficit/hyperactivity disorder (ADHD) show pseudoneglect—preferential allocation of attention to the left visual field (LVF) and a resulting slowing of mean reaction times (MRTs) in the right visual field (RVF), characteristic of neurotypical (NT) individuals —and whether lateralization of attention is modulated by presentation speed and incentives. Method. Fast Task, a four-choice reaction-time task where stimuli were presented in LVF or RVF, was used to investigate differences in MRT and reaction time variability (RTV) in adults with ADHD (n = 43) and NT adults (n = 46) between a slow/no-incentive and fast/incentive condition. In the lateralization analyses, pseudoneglect was assessed based on MRT, which was calculated separately for the LVF and RVF for each condition and each study participant. Results. Adults with ADHD had overall slower MRT and increased RTV relative to NT. MRT and RTV improved under the fast/incentive condition. Both groups showed RVF-slowing with no between-group or between-conditions differences in RVF-slowing. Conclusion. Adults with ADHD exhibited pseudoneglect, a NT pattern of lateralization of attention, which was not attenuated by presentation speed and incentives.


Author(s):  
Drew McRacken ◽  
Maddie Dyson ◽  
Kevin Hu

Over the past few decades, there has been a significant number of reports that suggested that reaction times for different sensory modalities were different – e.g., that visual reaction time was slower than tactile reaction time. A recent report by Holden and colleagues stated that (1) there has been a significant historic upward drift in reaction times reported in the literature, (2) that this drift or degradation in reaction times could be accounted for by inaccuracies in the methods used and (3) that these inaccurate methods led to inaccurate reporting of differences between visual and tactile based reaction time testing.  The Holden study utilized robotics (i.e., no human factors) to test visual and tactile reaction time methods but did not assess how individuals would perform on different sensory modalities.  This study utilized three different sensory modalities: visual, auditory, and tactile, to test reaction time. By changing the way in which the subjects were prompted and measuring subsequent reaction time, the impact of sensory modality could be analyzed. Reaction time testing for two sensory modalities, auditory and visual, were administered through an Arduino Uno microcontroller device, while tactile-based reaction time testing was administered with the Brain Gauge. A range of stimulus intensities was delivered for the reaction times delivered by each sensory modality. The average reaction time and reaction time variability was assessed and a trend could be identified for the reaction time measurements of each of the sensory modalities. Switching the sensory modality did not result in a difference in reaction time and it was concluded that this was due to the implementation of accurate circuitry used to deliver each test. Increasing stimulus intensity for each sensory modality resulted in faster reaction times. The results of this study confirm the findings of Holden and colleagues and contradict the results reported in countless studies that conclude that (1) reaction times are historically slower now than they were 50 years ago and (2) that there are differences in reaction times for different sensory modalities (vision, hearing, tactile). The implications of this are that utilization of accurate reaction time methods could have a significant impact on clinical outcomes and that many methods in current clinical use are basically perpetuating poor methods and wasting time and money of countless subjects or patients.


1965 ◽  
Vol 20 (2) ◽  
pp. 649-652 ◽  
Author(s):  
Alfred A. Baumeister ◽  
William F. Hawkins ◽  
George Kellas

The reaction times of retardates and normals were compared as a function of intensity of the reaction signal. Three intensity levels of a 1000-cycle tone were used: 5, 15, and 25 db above threshold. Each S was presented all tones in a completely counterbalanced order. The results revealed that both intelligence groups reacted faster with each increase in intensity of the signal. Since no significant interactions emerged, it cannot be concluded that the groups benefited differentially from increases in intensity of reaction signal. It is suggested that retardates may have a sensory set whereas normals have a motor set in the reaction time task.


1981 ◽  
Vol 53 (2) ◽  
pp. 355-360 ◽  
Author(s):  
Paul R. Surburg

The purpose of this study was to determine the effects of uncertainties of time and occurrence on reaction time of mildly handicapped students. 33 students were randomly assigned to the following treatment groups: no catch-trials, 10% catch-trials, and 20% catch-trials. Randomly varied foreperiods of 1.5, 3.0, and 4.5 sec. were used in a reaction time task. The role of catch-trials varied over four days of testing. Reaction times following 3.0- and 4.5-sec. were significantly faster than measurements following a 1.5-sec. foreperiod.


1976 ◽  
Vol 42 (3) ◽  
pp. 767-770 ◽  
Author(s):  
Matti J. Saari ◽  
Bruce A. Pappas

The EKG was recorded while Ss differentially responded to auditory or visual stimuli in a reaction time task. The EKG record was analyzed by dividing each R-R interval encompassing a stimulus presentation into 9 equal phases. Reaction times were determined as a function of the phase encompassing stimulus onset while movement times were determined for the phase in which the response was initiated. Only reaction time significantly varied with cardiac cycle, with reactions during the second phase being slower than later phases.


2001 ◽  
Vol 43 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Virginia E. Richardson ◽  
Shantha Balaswamy

A Dual Process Model of Bereavement, which considers the impact of loss- and restoration-oriented variables on widowers' levels of well-being, is tested on 200 widowed men during the second year of bereavement. Those who were widowed less than 500 days exhibited significantly more negative affect, less positive affect, and lower well-being that those widowed more than 500 days. Multiple regression analyses revealed that both loss and restoration variables were important throughout bereavement. Loss variables influenced negative affect and were especially critical during the early stages. Restoration variables significantly affected positive affect and had greater impact on the later bereaved. The results support a dual process model of bereavement, but also suggest that certain events, such as circumstances of death, are more important during early bereavement while reinvestment activities, such as dating, become relevant later. Some circumstances, such as a wife's suffering, have prolonged effects.


1973 ◽  
Vol 36 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Carl Spring ◽  
Lawrence Greenberg ◽  
Jimmy Scott ◽  
John Hopwood

In Exp. I, 22 poor readers and 22 normal readers of elementary-school age were matched on age, IQ, and sex and tested with a visual reaction-time task requiring same-different judgments. On initial trials poor readers were slower than normal readers. In addition, the performance of poor readers deteriorated faster than that of normal readers as testing progressed. In Exp. II, 20 hyperactive boys taking methylphenidate medication, 19 hyperactive boys whose medication was temporarily discontinued, and 19 normal boys were tested. Reaction time on early trials was not significantly different for boys in the on-medication and off-medication groups; however, both hyperactive groups were slower than the normal group. As testing progressed, reaction times of normal boys and boys taking medication remained fairly stable, while the performance of hyperactive boys not taking medication declined. The significance of these results to reading and spelling is discussed.


Diagnosis ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Pat Croskerry

AbstractPeople diagnose themselves or receive advice about their illnesses from a variety of sources ranging from their family or friends, alternate medicine, or through conventional medicine. In all cases, the diagnosing mechanism is the human brain which normally operates under the influence of a variety of biases. Most, but not all biases, reside in intuitive decision making, and no individual or group is immune from them. Two biases in particular, bias blind spot and myside bias, have presented obstacles to accepting the impact of bias on medical decision making. Nevertheless, there is now a widespread appreciation of the important role of bias in the majority of medical disciplines. The dual process model of decision making now seems well accepted, although a polarization of opinions has arisen with some arguing the merits of intuitive approaches over analytical ones and vice versa. We should instead accept that it is not one mode or the other that enables well-calibrated thinking but the discriminating use of both. A pivotal role for analytical thinking lies in its ability to allow decision makers the means to detach from the intuitive mode to mitigate bias; it is the gatekeeper for the final diagnostic decision. Exploring and cultivating such debiasing initiatives should be seen as the next major research area in clinical decision making. Awareness of bias and strategies for debiasing are important aspects of the critical thinker’s armamentarium. Promoting critical thinking in undergraduate, postgraduate and continuing medical education will lead to better calibrated diagnosticians.


Sign in / Sign up

Export Citation Format

Share Document