scholarly journals Moving Toward a Unified Platform for Insulin Delivery and Sensing of Inputs Relevant to an Artificial Pancreas

2016 ◽  
Vol 11 (2) ◽  
pp. 308-314 ◽  
Author(s):  
Anneke Graf ◽  
Sybil A. McAuley ◽  
Catriona Sims ◽  
Johanna Ulloa ◽  
Alicia J. Jenkins ◽  
...  

Advances in insulin pump and continuous glucose monitoring technology have primarily focused on optimizing glycemic control for people with type 1 diabetes. There remains a need to identify ways to minimize the physical burden of this technology. A unified platform with closely positioned or colocalized interstitial fluid glucose sensing and hormone delivery components is a potential solution. Present challenges to combining these components are interference of glucose sensing from proximate insulin delivery and the large discrepancy between the life span of current insulin infusion sets and glucose sensors. Addressing these concerns is of importance given that the future physical burden of this technology is likely to be even greater with the ongoing development of the artificial pancreas, potentially incorporating multiple hormone delivery, glucose sensing redundancy, and sensing of other clinically relevant nonglucose biochemical inputs.

2019 ◽  
Vol 24 (2) ◽  
pp. 99-106
Author(s):  
Michelle Condren ◽  
Samie Sabet ◽  
Laura J. Chalmers ◽  
Taylor Saley ◽  
Jenna Hopwood

Type 1 diabetes mellitus has witnessed significant progress in its management over the past several decades. This review highlights technologic advancements in type 1 diabetes management. Continuous glucose monitoring systems are now available at various functionality and cost levels, addressing diverse patient needs, including a recently US Food and Drug Administration (FDA)–approved implantable continuous glucose monitoring system (CGMS). Another dimension to these state-of-the-art technologies is CGMS and insulin pump integration. These integrations have allowed for CGMS-based adjustments to basal insulin delivery rates and suspension of insulin delivery when a low blood glucose event is predicted. This review also includes a brief discussion of upcoming technologies such as patch-based CGMS and insulin-glucagon dual-hormonal delivery.


2015 ◽  
Vol 18 (3) ◽  
pp. 32-45 ◽  
Author(s):  
Vladimir Aleksandrovich Karpel'ev ◽  
Elena Anatol'evna Fedorova ◽  
Yury Ivanovich Philippov ◽  
Aleksandr Yur'evich Mayorov ◽  
Marina Vladimirovna Shestakova

Creating an "artificial pancreas" (a "closed loop" insulin pump, with self-adjusting insulin abilities, based on real time continuous glucose monitoring data) – is one of the most actual medical challenges of modern engineering and cybernetics.Artificial pancreas (AP) prototypes based on wearable insulin pump with subcutaneous insulin delivery are still problematic, mainly because of slow insulin pharmacokinetics. Intravenous insulin infusion via AP allows effectively maintain euglycaemia for inpatients, due to insulin pharmacokinetics and pharmacodynamics advantages. Unfortunately, it can’t be used for outpatients. Intraperitoneal insulin infusion is still relatively infrequently used in the world, but it is a promising alternative, compared to both previous methods due to a physiological action profile, fast insulin pharmacokinetics, relatively better safety and availability for outpatient usage.The purpose of this review is to describe the intraperitoneal insulin infusion features for diabetes patients at a point of AP creation perspectives. 


BMJ Open ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. e020275 ◽  
Author(s):  
Martin de Bock ◽  
Sybil A McAuley ◽  
Mary Binsu Abraham ◽  
Grant Smith ◽  
Jennifer Nicholas ◽  
...  

IntroductionAutomated insulin delivery (also known as closed loop, or artificial pancreas) has shown potential to improve glycaemic control and quality of life in people with type 1 diabetes (T1D). Automated insulin delivery devices incorporate an insulin pump with continuous glucose monitoring(CGM) and an algorithm, and adjust insulin in real time. This study aims to establish the safety and efficacy of a hybrid closed-loop (HCL) system in a long-term outpatient trial in people with T1D aged 12 –<25 years of age, and compare outcomes with standard therapy for T1D as used in the contemporary community.Methods and analysisThis is an open-label, multicentre, 6-month, randomised controlled home trial to test the MiniMed Medtronic 670G system (HCL) in people with T1D aged 12 –<25 years, and compare it to standard care (multiple daily injections or continuous subcutaneous insulin infusion (CSII), with or without CGM). Following a run-in period including diabetes and carbohydrate counting education, dosage optimisation and baseline glucose control data collection, participants are randomised to either HCL or to continue on their current treatment regimen. The primary aim of the study is to compare the proportion of time spent in target sensor glucose range (3.9–10.0 mmol/L) on HCL versus standard therapy. Secondary aims include a range of glucose control parameters, psychosocial measures, health economic measures, biomarker status, user/technology interactions and healthcare professional expectations. Analysis will be intention to treat. A study in adults with an aligned design is being conducted in parallel to this trial.Ethics and disseminationEthics committee permissions were gained from respective institutional review boards. The findings of the study will provide high-quality evidence on the role of HCL in clinical practice.


Author(s):  
David Levy

People with Type 1 diabetes benefit from appropriate use of technology when it is affordable. Insulin pump treatment, in increasing use from the 1970s, is becoming widespread, and in certain countries near-universal. The principles, indications for, and examples of available pump devices are outlined, and an approach to insulin dosing with pumps. Minor complications are still common, but hyperglycaemic emergencies rare, and overall quality of life broadly increases with pump treatment. Continuous glucose monitoring, in use since the late 1990s, is also increasing in sophistication. Blinded diagnostic systems are widely used in clinics, and more recently personal continuous monitoring devices have been shown to improve glycaemic control if worn most of the time. The ultimate aim – the closed-loop system, or artificial pancreas – is in sight.


2021 ◽  
Vol 24 (2) ◽  
pp. 86
Author(s):  
Papa, G.

The monitoring and treatment of type 1 diabetes (T1D) are undergoing profound changes today. Notable steps include the improvement and widespread adoption of glucose sensors which are now extremely reliable and furthermore are used with insulin pumps in an integrated manner. Over the last 2 to 3 years these systems have evolved rapidly with the development and use of algorithms which permit the autonomous regulation of basal insulin. Correct control and administration of basal insulin is often the greatest stumbling block in multiple daily injection therapy as basal insulins cannot replicate the physiological rhythms of basal insulin secretion. Hypoglycemia is another critical point in standard insulin pen therapy as it does not permit dosage modulation in the same way as with an insulin pump. In this article we cover the fundamental steps in this revolution of insulin therapy which promises, in the not too distant future, the ultimate achievement of the artificial pancreas and thus the complete closure of the loop. All those working in diabetes care must be adequately trained and familiar with this technology as it should no longer be considered a niche treatment reserved for carefully selected patients and managed in only a few centers of excellence. In order to choose the best treatment, tailored to each individual patient’s needs, medical staff involved in the treatment of T1D require a thorough knowledge of standalone glucose sensors, insulin pumps and integrated systems with control algorithms.Once the critical issues (costs, psychological aspects, system management difficulties, alarm fatigue, etc.) still related to their use have been resolved, new Hybrid Closed Loop and Advanced Hybrid Closed Loop systems could become the new standard in the treatment of T1D. KEY WORDS type 1 Diabetes; insulin pump; decision-making algorithms; integrated system.


2018 ◽  
Vol 12 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Roberto Visentin ◽  
Enrique Campos-Náñez ◽  
Michele Schiavon ◽  
Dayu Lv ◽  
Martina Vettoretti ◽  
...  

Background: A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. Method: Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject’s basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of “dawn” phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. Results: One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. Conclusions: The new modifications introduced in the T1D simulator allow to extend its domain of validity from “single-meal” to “single-day” scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.


2018 ◽  
Vol 20 (10) ◽  
pp. 2458-2466 ◽  
Author(s):  
Revital Nimri ◽  
Eyal Dassau ◽  
Tomer Segall ◽  
Ido Muller ◽  
Natasa Bratina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document