scholarly journals Efficacy of collagen and alginate hydrogels for the prevention of rat chondrocyte dedifferentiation

2018 ◽  
Vol 9 ◽  
pp. 204173141880243 ◽  
Author(s):  
Guang-Zhen Jin ◽  
Hae-Won Kim

Dedifferentiation of chondrocytes remains a major problem in cartilage tissue engineering. The development of hydrogels that can preserve chondrogenic phenotype and prevent chondrocyte dedifferentiation is a meaningful strategy to solve dedifferentiation problem of chondrocytes. In the present study, three gels were prepared (alginate gel (Alg gel), type I collagen gel (Col gel), and their combination gel (Alg/Col gel)), and the in vitro efficacy of chondrocytes culture while preserving their phenotypes was investigated. While Col gel became substantially contracted with time, the cells encapsulated in Alg gel preserved the shape over the culture period of 14 days. The mechanical and cell-associated contraction behaviors of Alg/Col gel were similar to those of Alg. The cells in Alg and Alg/Col gels exhibited round morphology, whereas those in Col gel became elongated (i.e. fibroblast-like) during cultures. The cells proliferated with time in all gels with the highest proliferation being attained in Col gel. The expression of chondrogenic genes, including SOX9, type II collagen, and aggrecan, was significantly up-regulated in Alg/Col gel and Col gel, particularly in Col gel. However, the chondrocyte dedifferentiation markers, type I collagen and alkaline phosphatase ( ALP), were also expressed at significant levels in Col gel, which being contrasted with the events in Alg and Alg/Col gels. The current results suggest the cells cultured in hydrogels can express chondrocyte dedifferentiation markers as well as chondrocyte markers, which draws attention to choose proper hydrogels for chondrocyte-based cartilage tissue engineering.

2017 ◽  
Vol 23 (1-2) ◽  
pp. 55-68 ◽  
Author(s):  
Henrique V. Almeida ◽  
Binulal N. Sathy ◽  
Ivan Dudurych ◽  
Conor T. Buckley ◽  
Fergal J. O'Brien ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Ruo-Fu Tang ◽  
Xiao-zhong Zhou ◽  
Lie Niu ◽  
Yi-Ying Qi

BACKGROUND: Cartilage tissue lacks the ability to heal. Cartilage tissue engineering using cell-free scaffolds has been increasingly used in recent years. OBJECTIVE: This study describes the use of a type I collagen scaffold combined with WNT5A plasmid to promote chondrocyte proliferation and differentiation in a rabbit osteochondral defect model. METHODS: Type I collagen was extracted and fabricated into a collagen scaffold. To improve gene transfection efficiency, a cationic chitosan derivative N,N,N-trimethyl chitosan chloride (TMC) vector was used. A solution of TMC/WNT5A complexes was adsorbed to the collagen scaffold to prepare a WNT5A scaffold. Osteochondral defects were created in the femoral condyles of rabbits. The rabbits were divided into defect, scaffold, and scaffold with WNT5A groups. At 6 and 12 weeks after creation of the osteochondral defects, samples were collected from all groups for macroscopic observation and gene expression analysis. RESULTS: Samples from the defect group exhibited incomplete cartilage repair, while those from the scaffold and scaffold with WNT5A groups exhibited “preliminary cartilage” covering the defect. Cartilage regeneration was superior in the scaffold with WNT5A group compared to the scaffold group. Safranin O staining revealed more proteoglycans in the scaffold and scaffold with WNT5A groups compared to the defect group. The expression levels of aggrecan, collagen type II, and SOX9 genes were significantly higher in the scaffold with WNT5A group compared to the other two groups. CONCLUSIONS: Type I collagen scaffold showed effective adsorption and guided the three-dimensional arrangement of stem cells. WNT5A plasmid promoted cartilage repair by stimulating the expression of aggrecan, type II collagen, and SOX9 genes and proteins, as well as inhibiting cartilage hypertrophy.


2007 ◽  
Vol 15 ◽  
pp. B136
Author(s):  
H.J. Pulkkinen ◽  
V. Tiitu ◽  
P. Valonen ◽  
E. Hämäläinen ◽  
J. Koivurinta ◽  
...  

Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 342-343 ◽  
pp. 89-92 ◽  
Author(s):  
Jae Ho Jeong ◽  
Y.M. Moon ◽  
S.O. Kim ◽  
S.S. Yun ◽  
Hong In Shin

Despite many outstanding research works on cartilage tissue engineering, actual clinical application is not quite successful because of the absorption and progressive distortion of tissue engineered cartilage. We have developed a new method of cartilage tissue engineering comprising chondrocyte mixed Pluronic F-127 and cultured chondrocyte cell sheet which entirely cover the cell-Pluronic complex. We believe the addition of cultured chondrocyte cell sheet enhances the efficacy of chondrogenesis in vivo. Human ear cartilage piece was enzymatically dissociated and chondrocyte suspension was acquired. Chondrocytes were cultured and expanded as the routine manner. Cultured chondrocytes were plated in high-density monolayer and cultured with Chondrogenic media in 5% CO2 incubator. After 3 weeks of culture, chondrocyte cell sheet was formed and complete single sheet of chondrocyte could be harvested by gentle manipulation of culture plate with a cell scraper. Chondrocyte-Pluronic complex was established by mixing 1x 106 cells with 0.5 of Pluronic F- 127. Chondrocyte-Pluronic complex was completely covered with a sheet of cultured chondrocyte. The completed tissue engineered constructs were implanted into the subcutaneous tissue pocket of nude mice on the back. Tissue engineered constructs without cultured cell sheet were used as control. Samples were harvested at 8 weeks postoperatively and they were subjected to histological analysis and assayed for glycosaminoglycan (GAG), and type II collagen. Grossly, the size of cartilage specimen of cultured chondrocyte cell sheet covered group was larger than that of the control. On histologic examination, the specimen of cultured chondrocyte cell sheet covered group showed lacunae-containing cells embedded in a basophilic matrix. The chondrocyte cell sheet covered group specimen resembled mature or immature cartilage. The result of measurement of GAG and type II collagen of cartilage specimen of cultured chondrocyte sheet covered group was higher than that of the control. In conclusion, the new method of cartilage tissue engineering using chondrocyte cell sheet seems to be an effective method providing higher cartilage tissue gain and reliable success rate for cartilage tissue engineering.


1977 ◽  
Vol 73 (3) ◽  
pp. 736-747 ◽  
Author(s):  
K Von Der Mark ◽  
H Von Der Mark

This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.


2008 ◽  
Vol 31 (11) ◽  
pp. 960-969 ◽  
Author(s):  
H.J. Pulkkinen ◽  
V. Tiitu ◽  
P. Valonen ◽  
E.-R. Hämäläinen ◽  
M.J. Lammi ◽  
...  

Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.


Author(s):  
Tyler Novak ◽  
Sherry Voytik-Harbin ◽  
Corey P. Neu

Osteoarthritis (OA) affects over 27 million Americans, causing an annual economic burden of over $300 million [1]. Left untreated, local cartilage defects promote cartilage degeneration and serve as a target for clinical and research based interventions [2]. While current treatments have limited success and result in recurring symptoms [3], tissue engineering solutions are promising for cartilage repair.


Sign in / Sign up

Export Citation Format

Share Document