scholarly journals Opportunistic screening models for high-risk men and women to detect diastolic dysfunction and heart failure with preserved ejection fraction in the community

2018 ◽  
Vol 26 (6) ◽  
pp. 613-623 ◽  
Author(s):  
Aisha Gohar ◽  
Rogier F Kievit ◽  
Gideon B Valstar ◽  
Arno W Hoes ◽  
Evelien E Van Riet ◽  
...  

Background The prevalence of undetected left ventricular diastolic dysfunction is high, especially in the elderly with comorbidities. Left ventricular diastolic dysfunction is a prognostic indicator of heart failure, in particularly of heart failure with preserved ejection fraction and of future cardiovascular and all-cause mortality. Therefore we aimed to develop sex-specific diagnostic models to enable the early identification of men and women at high-risk of left ventricular diastolic dysfunction with or without symptoms of heart failure who require more aggressive preventative strategies. Design Individual patient data from four primary care heart failure-screening studies were analysed (1371 participants, excluding patients classified as heart failure and left ventricular ejection fraction <50%). Methods Eleven candidate predictors were entered into logistic regression models to be associated with the presence of left ventricular diastolic dysfunction/heart failure with preserved ejection fraction in men and women separately. Internal-external cross-validation was performed to develop and validate the models. Results Increased age and β-blocker therapy remained as predictors in both the models for men and women. The model for men additionally consisted of increased body mass index, moderate to severe shortness of breath, increased pulse pressure and history of ischaemic heart disease. The models performed moderately and similarly well in men (c-statistics range 0.60–0.75) and women (c-statistics range 0.51–0.76) and the performance improved significantly following the addition of N-terminal pro b-type natriuretic peptide (c-statistics range 0.61–0.80 in women and 0.68–0.80 in men). Conclusions We provide an easy-to-use screening tool for use in the community, which can improve the early detection of left ventricular diastolic dysfunction/heart failure with preserved ejection fraction in high-risk men and women and optimise tailoring of preventive interventions.

2018 ◽  
Vol 124 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Michinari Hieda ◽  
Erin Howden ◽  
Shigeki Shibata ◽  
Takashi Tarumi ◽  
Justin Lawley ◽  
...  

The beat-to-beat dynamic Starling mechanism (DSM), the dynamic modulation of stroke volume (SV) because of breath-by-breath changes in left-ventricular end-diastolic pressure (LVEDP), reflects ventricular-arterial coupling. The purpose of this study was to test whether the LVEDP-SV relationship remained impaired in heart failure with preserved ejection fraction (HFpEF) patients after normalization of LVEDP. Right heart catheterization and model-flow analysis of the arterial pressure waveform were performed while preload was manipulated using lower-body negative pressure to alter LVEDP. The DSM was compared at similar levels of LVEDP between HFpEF patients ( n = 10) and age-matched healthy controls ( n = 12) (HFpEF vs. controls: 10.9 ± 3.8 vs. 11.2 ± 1.3 mmHg, P = 1.00). Transfer function analysis between diastolic pulmonary artery pressure (PAD) representing dynamic changes in LVEDP vs. SV index was applied to obtain gain and coherence of the DSM. The DSM gain was significantly lower in HFpEF patients than in the controls, even at a similar level of LVEDP (0.46 ± 0.19 vs. 0.99 ± 0.39 ml·m−2·mmHg−1, P = 0.0018). Moreover, the power spectral density of PAD, the input variability, was greater in the HFpEF group than the controls (0.75 ± 0.38 vs. 0.28 ± 0.26 mmHg2, P = 0.01). Conversely, the power spectral density of SV index, the output variability, was not different between the groups ( P = 0.97). There was no difference in the coherence, which confirms the reliability of the linear transfer function between the two groups (0.71 ± 0.13 vs. 0.77 ± 0.19, P = 0.87). The DSM gain in HFpEF patients is impaired compared with age-matched controls even at a similar level of LVEDP, which may reflect intrinsic LV diastolic dysfunction and incompetence of ventricular-arterial coupling. NEW & NOTEWORTHY The beat-to-beat dynamic Starling mechanism (DSM), the dynamic modulation of stroke volume because of breath-by-breath changes in left-ventricular end-diastolic pressure (LVEDP), reflects ventricular-arterial coupling. Although the DSM gain is impaired in heart failure with preserved ejection fraction (HFpEF) patients, it is not clear whether this is because of higher LVEDP or left-ventricular diastolic dysfunction. The DSM gain in HFpEF patients is severely impaired, even at a similar level of LVEDP, which may reflect intrinsic left-ventricular diastolic dysfunction.


2021 ◽  
Vol 10 (18) ◽  
Author(s):  
Xu Chen ◽  
Sadia Ashraf ◽  
Nadia Ashraf ◽  
Romain Harmancey

Background Left ventricular diastolic dysfunction, an early stage in the pathogenesis of heart failure with preserved ejection fraction, is exacerbated by joint exposure to hypertension and obesity; however, the molecular mechanisms involved remain uncertain. The mitochondrial UCP3 (uncoupling protein 3) is downregulated in the heart with obesity. Here, we used a rat model of UCP3 haploinsufficiency (ucp3 +/‐ ) to test the hypothesis that decreased UCP3 promotes left ventricular diastolic dysfunction during hypertension. Methods and Results Ucp3 +/‐ rats and ucp3 +/+ littermates fed a high‐salt diet (HS; 2% NaCl) and treated with angiotensin II (190 ng/kg per min for 28 days) experienced a similar rise in blood pressure (158±4 versus 155±7 mm Hg). However, UCP3 insufficiency worsened diastolic dysfunction according to echocardiographic assessment of left ventricular filling pressures (E/e’; 18.8±1.0 versus 14.9±0.6; P <0.05) and the isovolumic relaxation time (24.7±0.6 versus 21.3±0.5 ms; P <0.05), as well as invasive monitoring of the diastolic time constant (Tau; 15.5±0.8 versus 12.7±0.2 ms; P <0.05). Exercise tolerance on a treadmill also decreased for HS/angiotensin II‐treated ucp3 +/‐ rats. Histological and molecular analyses further revealed that UCP3 insufficiency accelerated left ventricular concentric remodeling, detrimental interstitial matrix remodeling, and fetal gene reprogramming during hypertension. Moreover, UCP3 insufficiency increased oxidative stress and led to greater impairment of protein kinase G signaling. Conclusions Our findings identified UCP3 insufficiency as a cause for increased incidence of left ventricular diastolic dysfunction during hypertension. The results add further support to the use of antioxidants targeting mitochondrial reactive oxygen species as an adjuvant therapy for preventing heart failure with preserved ejection fraction in individuals with obesity.


BMJ Open ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. e028408 ◽  
Author(s):  
Gideon B Valstar ◽  
Sophie H Bots ◽  
Floor Groepenhoff ◽  
Aisha Gohar ◽  
Frans H Rutten ◽  
...  

IntroductionLeft ventricular diastolic dysfunction (LVDD) is a common condition in both sexes that may deteriorate into heart failure (HF) with preserved ejection fraction (pEF), although this seems to happen more often in women than in men. Both LVDD and HFpEF often go unrecognised, necessitating the discovery of biomarkers that aid both the identification of individuals with LVDD at risk of developing HF and identification of individuals most likely to benefit from treatment.Methods and analysisHELPFul is an ongoing case-cohort study at a Dutch cardiology outpatient clinic enrolling patients aged 45 years and older without history of cardiovascular disease, who were referred by the general practitioner for cardiac evaluation. We included a random sample of patients and enriched the cohort with cases (defined as an E/e’ ≥8 measured with echocardiography). Information about medical history, cardiovascular risk factors, electrocardiography, echocardiography, exercise test performance, common carotid intima-media thickness measurement and standard cardiovascular biomarkers was obtained from the routine care data collected by the cardiology outpatient clinic. Study procedure consists of extensive venous blood collection for biobanking and additional standardised questionnaires. Follow-up will consist of standardised questionnaires by mail and linkage to regional and national registries. We will perform cardiac magnetic resonance imaging and coronary CT angiography in a subgroup of patients to investigate the extent of macrovascular and microvascular coronary disease.Ethics and disseminationThe study protocol was approved by the Institutional Review Board of the University Medical Center Utrecht. Results will be disseminated through national and international conferences and in peer-reviewed journals in cardiovascular disease.Trial registrationNTR6016;Pre-results.


Sign in / Sign up

Export Citation Format

Share Document