scholarly journals Posterior spinal fusion using a unilateral C1 posterior arch screw and a C2 laminar screw for atlantoaxial fracture dislocation

2019 ◽  
Vol 7 ◽  
pp. 2050313X1984927 ◽  
Author(s):  
Yuichi Ono ◽  
Naohisa Miyakoshi ◽  
Michio Hongo ◽  
Yuji Kasukawa ◽  
Yoshinori Ishikawa ◽  
...  

Introduction: C1 lateral mass screws and C2 pedicle screws are usually chosen to fix atlantoaxial (C1–C2) instability. However, there are a few situations in which these screws are difficult to use, such as in a case with a fracture line at the screw insertion point and bleeding from the fracture site. A new technique using a unilateral C1 posterior arch screw and a C2 laminar screw combined with a contralateral C1 lateral mass screws–C2 pedicle screws procedure for upper cervical fixation is reported. Case Report: A 24-year-old woman had an irreducible C1–C2 anterior dislocation with a type III odontoid fracture on the right side due to a traffic accident. The patient underwent open reduction and posterior C1–C2 fixation. On the left side, a C1 lateral mass screws and a C2 pedicle screws were placed. Because there was bleeding from the fracture site and a high-riding vertebral artery was seen on the right side, a C1 posterior arch screw and a C2 laminar screw were chosen. Eight months after the surgery, computed tomography scans showed healing of the odontoid fracture with anatomically correct alignment. Conclusions: Although there have been few comparable studies, fixation with unilateral C1 posterior arch screw–C2 laminar screw could be a beneficial choice for surgeries involving the upper cervical region in patients with fracture dislocation or arterial abnormalities.

2014 ◽  
Vol 36 (3) ◽  
pp. E5 ◽  
Author(s):  
Kern H. Guppy ◽  
Indro Chakrabarti ◽  
Amit Banerjee

Imaging guidance using intraoperative CT (O-arm surgical imaging system) combined with a navigation system has been shown to increase accuracy in the placement of spinal instrumentation. The authors describe 4 complex upper cervical spine cases in which the O-arm combined with the StealthStation surgical navigation system was used to accurately place occipital screws, C-1 screws anteriorly and posteriorly, C-2 lateral mass screws, and pedicle screws in C-6. This combination was also used to navigate through complex bony anatomy altered by tumor growth and bony overgrowth. The 4 cases presented are: 1) a developmental deformity case in which the C-1 lateral mass was in the center of the cervical canal causing cord compression; 2) a case of odontoid compression of the spinal cord requiring an odontoidectomy in a patient with cerebral palsy; 3) a case of an en bloc resection of a C2–3 chordoma with instrumentation from the occiput to C-6 and placement of C-1 lateral mass screws anteriorly and posteriorly; and 4) a case of repeat surgery for a non-union at C1–2 with distortion of the anatomy and overgrowth of the bony structure at C-2.


2007 ◽  
Vol 7 (4) ◽  
pp. 414-418 ◽  
Author(s):  
Chandan Reddy ◽  
Aditya V. Ingalhalikar ◽  
Scott Channon ◽  
Tae-Hong Lim ◽  
James Torner ◽  
...  

Object In instrumentation of the upper cervical spine, placement of pedicle screws into C-2 is generally safe, although there is the potential for injury to the vertebral arteries. Owing to this risk, translaminar screws into C-2 have been used. The aim of this study was to compare the stability of the in vitro cadaveric spine using C-2 laminar compared with C-2 pedicle screws in C2–3 instrumentation. Methods Eight fresh frozen human cadaveric cervical spines (C1–6) were potted at C1–2 and C5–6. Pure moments in increments of 0.3 Nm to a maximum of 1.5 Nm were applied in flexion, extension, right and left lateral bending, and right and left axial rotation. Each specimen was tested sequentially in three modes: 1) intact; 2) C2 pedicle screw–C3 lateral mass fixation; and 3) C2 laminar screw–C3 lateral mass fixation. The sequence of fixation testing was randomized. Motion was tracked with reflective markers attached to C-2 and C-3. Results Spinal levels with instrumentation showed significantly less motion than the intact spine in all directions and with all loads greater than 0.3 Nm (p < 0.05). Although there was no significant difference between C2 pedicle screw–C3 lateral mass fixation and C2 laminar screw–C3 lateral mass fixation, generally the former type of fixation was associated with less motion than the latter. Conclusions When pedicle screws in C-2 are contraindicated or inappropriate, laminar screws in C-2 offer a safe and acceptable option for posterior instrumentation.


2014 ◽  
Vol 27 (2) ◽  
pp. 80-85 ◽  
Author(s):  
Zenya Ito ◽  
Kosaku Higashino ◽  
Satoshi Kato ◽  
Sung Soo Kim ◽  
Eugene Wong ◽  
...  

2008 ◽  
Vol 9 (6) ◽  
pp. 522-527 ◽  
Author(s):  
Michael B. Donnellan ◽  
Ioannis G. Sergides ◽  
William R. Sears

The authors present a novel technique of atlantoaxial fixation using multiaxial C-1 posterior arch screws. The technique involves the insertion of bilateral multiaxial C-1 posterior arch screws, which are connected by crosslinked rods to bilateral multiaxial C-2 pars screws. The clinical results are presented in 3 patients in whom anomalies of the vertebral arteries, C-1 lateral masses, and/or posterior arch of C-1 presented difficulty using existing fixation techniques with transarticular screws, C-1 lateral mass screws, or posterior wiring. The C-1 posterior arch screws achieved solid fixation and their insertion appeared to be technically less demanding than that of transarticular or C-1 lateral mass screws. This technique may reduce the risk of complications compared with existing techniques, especially in patients with anatomical variants of the vertebral artery, C-1 lateral masses, or C-1 posterior arch. This technique may prove to be an attractive fixation option in patients with normal anatomy.


Spine ◽  
2009 ◽  
Vol 34 (4) ◽  
pp. 371-377 ◽  
Author(s):  
Xiang-Yang Ma ◽  
Qing-Shui Yin ◽  
Zeng-Hui Wu ◽  
Hong Xia ◽  
Jing-Fa Liu ◽  
...  

2012 ◽  
Vol 16 (3) ◽  
pp. 251-256 ◽  
Author(s):  
Ron I. Riesenburger ◽  
Tejaswy Potluri ◽  
Nikhil Kulkarni ◽  
William Lavelle ◽  
Marie Roguski ◽  
...  

Object Both ventral and dorsal operative approaches have been used to treat unilateral cervical facet injuries. The gold standard ventral approach is anterior cervical discectomy and fusion. There is, however, no clear gold standard dorsal operation. In this study, the authors tested the stability of multiple posterior constructs, including unilateral lateral mass fixation supplemented by an interspinous cable. Methods Six fresh human cervical spine specimens (C3–T1) were tested by applying pure moments to the C-3 vertebral body in increments of 0.5 Nm from 0 Nm to 2.0 Nm. Each specimen was tested in the following 8 conditions (in the order shown): 1) intact; 2) after destabilization via injury to the C5–6 facet; 3) with bilateral C5–6 lateral mass screws and rods; 4) after further destabilization by creating a right unilateral lateral mass fracture of C-5 (which rendered secure screw placement into the right C-5 lateral mass impossible); 5) with unilateral left C5–6 lateral mass screws and rod; 6) with unilateral C5–6 lateral mass screws and rod supplemented with an interspinous cable; 7) with a bilateral multilevel dorsal construct C4–6; and 8) after a C5–6 anterior cervical discectomy and fusion (ACDF) procedure with a polyetheretherketone graft and plate. Results The bilateral C5–6 lateral mass construct reduced the range of C5–6 motion to 33.6% of normal. The unilateral C5–6 lateral mass construct resulted in an increased range of motion to 110.1% of normal. The unilateral lateral mass construct supplemented by an interspinous cable reduced the C5–6 range of motion to 89.4% of normal. The bilateral C4–6 lateral mass construct reduced the C5–6 range of motion to 44.2% of normal. The C5–6 ACDF construct reduced the C5–6 range of motion to 62.6% of normal. Conclusions The unilateral lateral mass construct supplemented by an interspinous cable does reduce range of motion compared with an intact specimen, but is significantly inferior to a C4–6 bilateral lateral mass construct. When using a dorsal approach, the unilateral construct with a cable should only be considered in selected instances.


2020 ◽  
Vol 8 (5) ◽  
pp. 1049-1058
Author(s):  
Hwee Weng Dennis Hey ◽  
Wen-Hai Zhuo ◽  
Yong Hao Joel Tan ◽  
Jiong Hao Tan

2013 ◽  
Vol 13 (12) ◽  
pp. 1892-1896 ◽  
Author(s):  
Christopher M. Zarro ◽  
Steven C. Ludwig ◽  
Adam H. Hsieh ◽  
Charles N. Seal ◽  
Daniel E. Gelb

2013 ◽  
Vol 23 (4) ◽  
pp. 724-731 ◽  
Author(s):  
Florian Fensky ◽  
Rebecca A. Kueny ◽  
Kay Sellenschloh ◽  
Klaus Püschel ◽  
Michael M. Morlock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document