The Role of Essential Fatty Acids in Human Health

2013 ◽  
Vol 18 (4) ◽  
pp. 268-289 ◽  
Author(s):  
Norris R. Glick ◽  
Milton H. Fischer

Fatty acid research began about 90 years ago but intensified in recent years. Essential fatty acids (linoleic and α-linolenic) must come from diet. Other fatty acids may come from diet or may be synthesized. Fatty acids are major components of cell membrane structure, modulate gene transcription, function as cytokine precursors, and serve as energy sources in complex, interconnected systems. It is increasingly apparent that dietary fatty acids influence these vital functions and affect human health. While the strongest evidence for influence is found in cardiovascular disease and mental health, many additional conditions are affected. Problematic changes in the fatty acid composition of human diet have also taken place over the last century. This review summarizes current understanding of the pervasive roles of essential fatty acids and their metabolites in human health.

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Giulia Collodel ◽  
Cesare Castellini ◽  
Jetty Chung-Yung Lee ◽  
Cinzia Signorini

Almost 50% of infertility cases are associated with human male infertility. The sperm membrane is a key structure influencing sperm morphology and function in normal and pathological conditions. The fatty acid profile determines the performance not only of sperm motility but also of acrosomal reaction and sperm-oocyte fusion. This review presents available knowledge on the role of fatty acid composition in human sperm and spermatogenesis and discusses the influence of dietary fatty acids on the sperm fatty acid profile. Recent studies in biological sciences and clinical researches in this field are also reported. The topic object of this review has potential application in medicine by identifying potential causes of infertility.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Emmanuelle Sagols ◽  
Nathalie Priymenko

In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amod Madurapperumage ◽  
Leung Tang ◽  
Pushparajah Thavarajah ◽  
William Bridges ◽  
Emerson Shipe ◽  
...  

Chickpea is a highly nutritious pulse crop with low digestible carbohydrates (40–60%), protein (15–22%), essential fats (4–8%), and a range of minerals and vitamins. The fatty acid composition of the seed adds value because fats govern the texture, shelf-life, flavor, aroma, and nutritional composition of chickpea-based food products. Therefore, the biofortification of essential fatty acids has become a nutritional breeding target for chickpea crop improvement programs worldwide. This paper examines global chickpea production, focusing on plant lipids, their functions, and their benefits to human health. In addition, this paper also reviews the chemical analysis of essential fatty acids and possible breeding targets to enrich essential fatty acids in chickpea (Cicer arietinum) biofortification. Biofortification of chickpea for essential fatty acids within safe levels will improve human health and support food processing to retain the quality and flavor of chickpea-based food products. Essential fatty acid biofortification is possible by phenotyping diverse chickpea germplasm over suitable locations and years and identifying the candidate genes responsible for quantitative trait loci mapping using genome-wide association mapping.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3782
Author(s):  
Francesco Visioli ◽  
Andrea Poli

One of the most controversial areas of nutrition research relates to fats, particularly essential fatty acids, in the context of cardiovascular disease risk. A critical feature of dietary fatty acids is that they incorporate into the plasma membrane, modifying fluidity and key physiological functions. Importantly, they can reshape the bioavailability of eicosanoids and other lipid mediators, which direct cellular responses to external stimuli, such as inflammation and chronic stress conditions. This paper provides an overview of the most recent evidence, as well as historical controversies, linking fat consumption with human health and disease. We underscore current pitfalls in the area of fatty acid research and critically frame fatty acid intake in the larger context of diet and behavior. We conclude that fundamental research on fatty acids and lipids is appropriate in certain areas, but the rigor and reproducibility are lacking in others. The pros and cons are highlighted throughout the review, seeking to guide future research on the important area of nutrition, fat intake, and cardiovascular disease risk.


1965 ◽  
Vol 32 (1) ◽  
pp. 19-20 ◽  
Author(s):  
J. H. Moore ◽  
D. L. Williams

The role of the essential fatty acids, linoleic and arachidonic acids, in human nutrition has been widely studied, particularly with respect to their possible action in preventing arterial disease in adults, e.g. Kinsell (1963). In addition, Hansen, Haggard, Boelsche, Adam & Wiese (1958) have emphasized the importance of linoleic acid in the nutrition of infants. Although milk fat contains only relatively small amounts of linoleic and arachidonic acids, the part played by milk and milk products in contributing essential fatty acids to the human diet has received considerable attention (Combes, Pratt & Wiese, 1962; Kon, 1962; Hansen et al. 1963; Garton, 1964). However, despite the initial dependence of many infants on dried milk as an exogenous source of essential fatty acids the effects of commercial drying processes on the constituents of milk fat have not been much investigated. A comparative study of the fatty acid compositions of raw and dried milk was therefore undertaken.


2017 ◽  
Vol 10 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Hércules Rezende Freitas

Polyunsaturated fatty acids (PUFAs) comprise about 35-40% of the total lipid content from green algaeChlorella, reaching up to 24% linoleic acid and 27% α-linolenic acid inC. vulgaris. Also, microalgae nutrient composition may be modulated by changes in the culture medium, increasing fatty acid and microelement concentrations in the algae biomass. PUFAs, such as α-linolenic (n-3) and linoleic (n-6) acids, as well as its derivatives, are considered essential for dietary consumption, and their ability to regulate body chemistry has been recently explored in depth. A balanced fatty acid consumption is shown to counteract the negative effects of western diets, such as chronic inflammation and glucose intolerance. In this brief commentary, technological and practical uses ofC. vulgarisare explored as means to improve dietary quality and, ultimately, human health.


2021 ◽  
Vol 11 (5) ◽  
pp. 2409
Author(s):  
Wojciech Kolanowski

Salmonids are valuable fish in the human diet due to their high content of bioactive omega-3 very long-chain polyunsaturated fatty acid (VLC PUFA). The aim of this study was to assess the omega-3 VLC PUFA content in selected salmonid fish present on the food market regarding whether they were farm-raised or wild. It was assumed that farm-raised fish, by eating well-balanced feed enriched with omega-3 PUFA, might contain omega-3 VLC PUFA in levels similar to that of wild fish. Fat content, fatty acid composition and omega-3 VLC PUFA content in fish fillets were measured. Farm-raised salmon from Norway, wild Baltic salmon, farm-raised rainbow trout and brown trout were bought from a food market whereas wild trout (rainbow and brown) were caught alive. The fat content in fish ranged from 3.3 to 8.0 g/100 g of fillet. It was confirmed that although wild salmonid fish contain 10–25% more omega-3 VLC PUFA in lipid fraction, the farm-raised ones, due to the 60–100% higher fat content, are an equally rich source of these desirable fatty acids in the human diet. One serving (130 g) of salmonid fish fillets might provide a significant dose of omega-3 VLC PUFA, from 1.2 to 2.5 g. Thus, due to very high content of bioactive fatty acids eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic (DHA) in their meat, salmonid fish currently present on the food market, both sea and freshwater as well as wild and farm-raised, should be considered as natural functional food.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


Sign in / Sign up

Export Citation Format

Share Document