scholarly journals Oblique lumbar interbody fusion in management of lumbar degenerative spinal stenosis in Chinese population

2020 ◽  
Vol 27 (2) ◽  
pp. 119-127
Author(s):  
Man Yee Cheung ◽  
Philip Cheung

Purpose: The purpose of this study was to assess the outcomes of a cohort of local Chinese patients who underwent oblique lumbar interbody fusion (OLIF) surgery for lumbar degenerative diseases. Methods: We adopted a minimally invasive anterior approach to the lumbar spine through retroperitoneal access. In the first part of the surgery, a 3- to 5-cm left lateral incision over the abdomen was made guided by imaging. L2–L5 disc space was approached via the corridor between the left psoas muscle and the great vessels. A specially designed interbody cage filled with bone substitute was utilized for interbody fusion. In the second part of the surgery, posterior instrumentation with or without decompression, was performed in a prone position. Efficacy and safety of the surgery were studied. Results: A total of 60 patients with the mean age of 68 years underwent OLIF at 83 surgical levels. Their mean operative time was 79 min, and the average blood loss was 84 ml for the OLIF part. The mean length of hospital stay was 5.5 days. Based on plain computed tomography scan obtained at post-operative 6 months, successful fusion was achieved in 82 of the 83 surgical levels. The Oswestry Disability Index for low back pain had a mean reduction of 22.3% after 6 months. Specific complications observed include transient thigh pain or numbness, retroperitoneal hematoma, post-operative ileus and Bone Morphogenetic Protein (BMP) osteolysis. None of the patients experienced infection, symptomatic pseudo-arthrosis, hardware failure, vascular injury, nerve injury, ureteral injury, bowel injury, incisional hernia or death. Conclusion: OLIF is an effective procedure to treat lumbar spinal stenosis and spondylolisthesis with excellent fusion rate and good functional outcome. Complications specific to this procedure are not uncommon, but majority are minor and self-recovery. Proper training is required to minimize potential surgical risks.

2020 ◽  
Author(s):  
Xigong Li ◽  
Weiyi Diao ◽  
Yuzhu Zhang ◽  
Junsong Wu ◽  
Chunyang Xing ◽  
...  

Abstract Study DesignTechnique note.ObjectivesTo describe our modified oblique lumbar interbody fusion (OLIF) technique in the reconstruction of the L5-S1 segment.Summary of Background DataRecently, OLIF has been generally recognized as an effective procedure in the treatment of various spinal pathologies at L2-L5 segments. However, the usage of OLIF at the L5-S1 segment doesn’t have gained widespread acceptance in spine community. Some authors still concern about the feasibility of OLIF used in lumbosacral fusionMethodsTen consecutive patients underwent L5-S1 interbody fusion using the OLIF technique in our institution. The L5–S1 disc space is approached via one retroperitoneal oblique corridor between the psoas muscle and the great vessels. The discectomy and endplate preparation are performed through a surgical window developed on the anterolateral side of L5-S1 disc. A secondary cage insertion technique is used for safe placement of interbody fusion cages.ResultsOf the 10 patients, 6 were males and 4 were females, with an average age of 55.4±6.8 years. There were 8 single-level and 2 two-level procedures, including 2 at L4–L5 and 10 at L5–S1. Preoperative axial MR images confirmed 1 patient with type I LCIV (left common iliac vein), 6 with type II LCIV and 3 with type III LCIV. The average blood loss was 133.4±88.5 ml, and the average operative times were 153.6±38.3 minutes. Postoperative radiographs examination confirmed all patients obtained a better reconstruction at the lumbosacral junction. Two patients with type III LCIV sustained iliolumbar vein laceration during the exposure, and no other perioperative complications were encountered.ConclusionOur novel OLIF L5-S1 technique is a more feasible procedure of lumbosacral fusion, which shared the common surgical plane with OLIF L2-5, allowing for L2 to S1 reproducible multi-levels interbody fusions via a retroperitoneal oblique corridor between the psoas muscle and the great vessels. Detailed preoperative plan and meticulous intraoperative manipulation are prerequisite for the success of OLIF L5-S1 procedure.


2021 ◽  
Author(s):  
Martin H Pham ◽  
Jillian Plonsker ◽  
Luis D Diaz-Aguilar ◽  
Joseph A Osorio ◽  
Ronald A Lehman

Abstract The use of robotic guidance for spinal instrumentation is promising for its ability to offer the advantages of precision, accuracy, and reproducibility. This has become even more important in the era of lateral interbody surgery because spinal robotics opens up the possibility of a straightforward workflow for single-position surgery in the lateral position.  We present here a case of a 72-yr-old woman who presented with an L4-5 spondylolisthesis with axial back pain and radiculopathy. She subsequently underwent an L4-5 oblique lumbar interbody fusion with L4-5 bilateral posterior instrumentation in a single lateral position (Mazor X Stealth Edition, Medtronic Sofamor Danek, Medtronic Inc, Dublin, Ireland). Due to the oblique lateral approach and posterior robotic assistance, both surgeons were able to work simultaneously for increased efficiency. To our knowledge, this is the first video demonstrating a two-surgeon simultaneous robotic single-position surgery with oblique lumbar interbody fusion using a spinal robotic platform.  There is no identifying information in this video. Patient consent was obtained for the surgical procedure and for publishing of the material included in the video.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Brenton Pennicooke ◽  
Jeremy Guinn ◽  
Dean Chou

BACKGROUND While performing lateral lumbar interbody fusion surgery, one of the surgical goals is to release the contralateral side with a Cobb elevator, allowing distraction of the interbody space. Many times, there are large osteophytes on the contralateral side, and the osteophytes can be split open with the Cobb or blunt instrument. It is extremely rare for the actual osteophyte to break off from the vertebral body into the contralateral psoas muscle and lumbar plexus. OBSERVATIONS The authors report a case of symptomatic lumbar plexopathy caused by an osteophyte fracture after an oblique lumbar interbody fusion requiring a right-sided anterior approach to excise the bony fragment. They illustrate the case with imaging that the radiologist did not comment on, and they also show a video of the surgical excision of the osteophyte through a right-sided anterior lumbar retroperitoneal approach. The authors also show how the patient had spontaneous right-sided electromyography (EMG) firing before excision of the osteophyte and how the EMG firing resolved after excision. LESSONS Although the literature is plentiful with regard to ipsilateral approach–related complications, the authors discuss the literature with regard to contralateral complications after minimally invasive lateral lumbar interbody fusion.


2021 ◽  
pp. 219256822110491
Author(s):  
Ram Alluri ◽  
Nicholas Clark ◽  
Evan Sheha ◽  
Karim Shafi ◽  
Matthew Geiselmann ◽  
...  

Study Design Cadaveric study. Objective To compare the position of the femoral nerve within the lumbar plexus at the L4-L5 disc space in the lateral decubitus vs prone position. Methods Seven lumbar plexus specimens were dissected and the femoral nerve within the psoas muscle was identified and marked with radiopaque paint. Lateral fluoroscopic images of the cadaveric specimens in the lateral decubitus vs prone position were obtained. The location of the radiopaque femoral nerve at the L4-L5 disc space was normalized as a percentage of the L5 vertebral body (0% indicates posterior location and 100% indicates anterior location at the L4-L5 disc space). The location of the femoral nerve at L4-L5 in the lateral decubitus vs prone position was compared using a paired t test. Results In the lateral decubitus position, the femoral nerve was located 28% anteriorly from the posterior edge of the L4-L5 disc space, and in the prone position, the femoral nerve was relatively more posterior, located 18% from the posterior edge of the L4-L5 disc space ( P = .037). Conclusions The femoral nerve was on average more posteriorly located at the L4-L5 disc space in the prone position compared to lateral decubitus. This more posterior location allows for a larger safe zone at the L4-L5 disc space, which may decrease the incidence of neurologic complications associated with Lateral lumbar interbody fusion in the prone vs lateral decubitus position; however, further studies are needed to evaluate this possible clinical correlation.


2006 ◽  
Vol 5 (6) ◽  
pp. 534-539 ◽  
Author(s):  
Aaron R. Cutler ◽  
Saquib Siddiqui ◽  
Mohan Avinash L. ◽  
Virany H. Hillard ◽  
Franco Cerabona ◽  
...  

Object Transforaminal lumbar interbody fusion (TLIF) is an accepted alternative to circumferential fusion of the lumbar spine in the treatment of degenerative disc disease, spondylolisthesis, and recurrent disc herniation. To maintain disc height while arthrodesis takes place, the technique requires the use of an interbody spacer. Although titanium cages are used in this capacity, the two most common spacers are polyetheretherketone (PEEK) cages and femoral cortical allografts (FCAs). The authors compared the clinical and radiographic outcomes of patients who underwent TLIF with pedicle screw fixation, in whom either a PEEK cage or an FCA was placed as an interbody spacer. Methods The charts and x-ray films obtained in 39 patients (age range 33–68 years, mean 44.7 years) who underwent single-level TLIF between October 2001 and April 2004 and in whom either a PEEK cage (18 patients) or FCA (21 patients) was placed as an interbody spacer were evaluated in a retrospective study. Radiological outcome was based on fusion rate and a comparison of the initial postoperative lordotic angle on standing lateral radiographs with that at long-term follow up (mean follow up 15.1 months, minimum 12 months). To control for variations in radiographic magnification, the authors used lordotic angle as an indirect measure of disc space height. Clinical outcome was assessed using the Oswestry Disability Index (ODI). There were no major complications in either group. Radiographically documented fusion occurred in all patients in the PEEK group and 95.2% of those in the FCA group. Pseudarthrosis developed in one patient in the FCA group, and this patient underwent additional surgery. In both groups, the mean lordotic angle changed by less than 2.20° during the postoperative period, and the mean postoperative ODI score was more than 40 points lower than the mean preoperative score. There was no significant difference between the two groups in mean change in lordotic angle (p = 0.415) and mean change in ODI score (p = 0.491). Conclusions Both PEEK cages and FCAs are highly effective in promoting interbody fusion, maintaining postoperative disc space height, and achieving desirable clinical outcomes in patients who undergo TLIF with pedicle screw fixation. The advantages of PEEK cages include a lower incidence of subsidence and their radiolucency, which permits easier visualization of bone growth.


2020 ◽  
Author(s):  
Xigong Li ◽  
Weiyi Diao ◽  
Yuzhu Zhang ◽  
Junsong Wu ◽  
Chunyang Xing ◽  
...  

Abstract Study Design: Technique note.Objectives: To describe our modified oblique lumbar interbody fusion (OLIF) technique in the reconstruction of the L5-S1 segment.Summary of Background Data: Recently, OLIF has been generally recognized as an effective procedure in the treatment of various spinal pathologies at L2-L5 segments. However, the usage of OLIF at the L5-S1 segment doesn’t have gained widespread acceptance in spine community. Some authors still concern about the feasibility of OLIF used in lumbosacral fusion Methods: Ten consecutive patients underwent L5-S1 interbody fusion using the OLIF technique in our institution. The L5–S1 disc space is approached via one retroperitoneal oblique corridor between the psoas muscle and the great vessels. The discectomy and endplate preparation are performed through a surgical window developed on the anterolateral side of L5-S1 disc. A secondary cage insertion technique is used for safe placement of interbody fusion cages.Results: Of the 10 patients, 6 were males and 4 were females, with an average age of 55.4±6.8 years. There were 8 single-level and 2 two-level procedures, including 2 at L4–L5 and 10 at L5–S1. Preoperative axial MR images confirmed 1 patient with type I LCIV (left common iliac vein), 6 with type II LCIV and 3 with type III LCIV. The average blood loss was 133.4±88.5 ml, and the average operative times were 153.6±38.3 minutes. Postoperative radiographs examination confirmed all patients obtained a better reconstruction at the lumbosacral junction. Two patients with type III LCIV sustained iliolumbar vein laceration during the exposure, and no other perioperative complications were encountered.Conclusion: Our novel OLIF L5-S1 technique is a more feasible procedure of lumbosacral fusion, which shared the common surgical plane with OLIF L2-5, allowing for L2 to S1 reproducible multi-levels interbody fusions via a retroperitoneal oblique corridor between the psoas muscle and the great vessels. Detailed preoperative plan and meticulous intraoperative manipulation are prerequisite for the success of OLIF L5-S1 procedure.


2016 ◽  
Vol 25 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Jacob R. Joseph ◽  
Brandon W. Smith ◽  
Rakesh D. Patel ◽  
Paul Park

OBJECTIVE Lateral lumbar interbody fusion (LLIF) is an increasingly popular technique used to treat degenerative lumbar disease. The technique of using an intraoperative cone-beam CT (iCBCT) and an image-guided navigation system (IGNS) for LLIF cage placement has been previously described. However, other than a small feasibility study, there has been no clinical study evaluating its accuracy or safety. Therefore, the purpose of this study was to evaluate the accuracy and safety of image-guided spinal navigation in LLIF. METHODS An analysis of a prospectively acquired database was performed. Thirty-one consecutive patients were identified. Accuracy was initially determined by comparison of the planned trajectory of the IGNS with post–cage placement intraoperative fluoroscopy. Accuracy was subsequently confirmed by postprocedural CT and/or radiography. Cage placement was graded based on a previously described system separating the disc space into quarters. RESULTS The mean patient age was 63.9 years. A total of 66 spinal levels were treated, with a mean of 2.1 levels (range 1–4) treated per patient. Cage placement was noted to be accurate using IGNS in each case, as confirmed with intraoperative fluoroscopy and postoperative imaging. Sixty-four (97%) cages were placed within Quarters 1 to 2 or 2 to 3, indicating placement of the cage in the anterior or middle portions of the disc space. There were no instances of misguidance by IGNS. There was 1 significant approach-related complication (psoas muscle abscess) that required intervention, and 8 patients with transient, mild thigh paresthesias or weakness. CONCLUSIONS LLIF can be safely and accurately performed utilizing iCBCT and IGNS. Accuracy is acceptable for multilevel procedures.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jincai Yang ◽  
Chang Liu ◽  
Yong Hai ◽  
Peng Yin ◽  
Lijin Zhou ◽  
...  

Purpose. The objective of this study was to investigate the preliminary effectiveness of percutaneous endoscopic transforaminal lumbar interbody fusion (PE-TLIF) for the treatment of lumbar spinal stenosis (LSS). Methods. From September 2016 to June 2017, a series of seven patients consisting of six females and one male with an average age of 55.25 years (range 43–77 years) who were diagnosed with LSS were involved in this study. All patients were treated by PE-TLIF. During perioperative and follow-up period, demographic data, operation time, intraoperative blood loss, Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and modified MacNab criteria were evaluated and perioperative complications were documented. Results. All patients were followed up for more than 12 months, with an average follow-up time of 15 (range 12-21) months. The mean VAS of back pain was 7.43 (range 6-8) preoperatively and 0.86 (range 0-2) at the final follow-up. The mean VAS of leg pain was 6.14 (range 4-9) preoperatively and 0.71 (range 0-1) at the final follow-up. The mean ODI was 53.57% (range 38%-63%) preoperatively and 15.57% (range 5%-26%) at the final follow-up. In three-month follow-up, continuous bone trabeculae bridging between intervertebral bodies was seen in 3 cases, and the remaining 4 cases could identify continuous bone trabeculae bridging at 6-month follow-up, reaching the standard of spinal intervertebral fusion. At the final follow-up, 4 patients were rated as excellent (4/7) and 3 patients were rated as good (3/7) according to the modified MacNab criteria. Conclusions. Our study suggested that percutaneous endoscopic transforaminal lumbar interbody fusion could acquire satisfactory treatment effects for the patients with lumbar spinal stenosis, even for the patient who could not afford general anesthesia.


2018 ◽  
Vol 28 (5) ◽  
pp. 486-491 ◽  
Author(s):  
Khalid M. I. Salem ◽  
Aditya P. Eranki ◽  
Scott Paquette ◽  
Michael Boyd ◽  
John Street ◽  
...  

OBJECTIVEThe study aimed to determine if the intraoperative segmental lordosis (as calculated on a cross-table lateral radiograph following a single-level transforaminal lumbar interbody fusion [TLIF] for degenerative spondylolisthesis/low-grade isthmic spondylolisthesis) is maintained at discharge and at 6 months postsurgery.METHODSThe authors reviewed images and medical records of patients ≥ 16 years of age with a diagnosis of an isolated single-level, low-grade spondylolisthesis (degenerative or isthmic) with symptomatic spinal stenosis treated between January 2008 and April 2014. Age, sex, surgical level, surgical approach, and facetectomy (unilateral vs bilateral) were recorded. Upright standardized preoperative, early, and 6-month postoperative radiographs, as well as intraoperative lateral radiographs, were analyzed for the pelvic incidence, segmental lumbar lordosis (SLL) at the TILF level, and total LL (TLL). In addition, the anteroposterior position of the cage in the disc space was documented. Data are presented as the mean ± SD; a p value < 0.05 was considered significant.RESULTSEighty-four patients were included in the study. The mean age of patients was 56.8 ± 13.7 years, and 46 patients (55%) were men. The mean pelvic incidence was 59.7° ± 11.9°, and a posterior midline approach was used in 47 cases (56%). All TLIF procedures were single level using a bullet-shaped cage. A bilateral facetectomy was performed in 17 patients (20.2%), and 89.3% of procedures were done at the L4–5 and L5–S1 segments. SLL significantly improved intraoperatively from 15.8° ± 7.5° to 20.9° ± 7.7°, but the correction was lost after ambulation. Compared with preoperative values, at 6 months the change in SLL was modest at 1.8° ± 6.7° (p = 0.025), whereas TLL increased by 4.3° ± 9.6° (p < 0.001). The anteroposterior position of the cage, approach, level of surgery, and use of a bilateral facetectomy did not significantly affect postoperative LL.CONCLUSIONSFollowing a single-level TLIF procedure using a bullet-shaped cage, the intraoperative improvement in SLL is largely lost after ambulation. The improvement in TLL over time is probably due to the decompression part of the procedure. The approach, level of surgery, bilateral facetectomy, and position of the cage do not seem to have a significant effect on LL achieved postoperatively.


Sign in / Sign up

Export Citation Format

Share Document