scholarly journals Effect of particle size on labeling density for catalase in protein A-gold immunocytochemistry.

1988 ◽  
Vol 36 (1) ◽  
pp. 107-109 ◽  
Author(s):  
S Yokota

Effect of particle size on labeling intensity in protein A-gold immunocytochemistry was studied. Catalase labeling of rat liver peroxisomes was used as a labeling model. Ultra-thin sections of Lowicryl K4M-embedded rat liver were stained for catalase with protein A-gold (pAg) probes. Five different sizes of colloidal gold probes, from 5 nm to 38 nm in diameter, were prepared. Labeling intensity decreased as the particle size of the pAg probes increased. The highest labeling was obtained by the 5-nm pAg probe and the lowest by the 38-nm pAg probe. Quantitative analysis also showed that labeling density was inversely proportional to the size of gold particles. The results suggest that the pAg probe with small gold particles has high sensitivity.

1988 ◽  
Vol 36 (4) ◽  
pp. 329-336 ◽  
Author(s):  
A Völkl ◽  
E Baumgart ◽  
H D Fahimi

We investigated the immunocytochemical localization of urate oxidase by light and electron microscopy. Rabbits were immunized with urate oxidase prepared from rat liver and the resulting antibody was further purified by affinity chromatography. Immunoblotting of the antigen revealed a single band of Mr 32,500 daltons, consistent with a subunit of uricase. The same band was observed in immunoblots prepared from a total peroxisome fraction and in its subfraction containing the cores, but not in the matrix portion. Immunostaining of 1-micron sections with the antibody against uricase followed by protein A-gold-silver showed fine granules in hepatocytes, which exhibited distinct fluorescence when examined in a microscope equipped with epifluorescence illumination. Incubation of ultra-thin sections of rat liver, embedded in Lowicryl K4M, LR White, or Epon, with the anti-uricase antibody followed by protein A-gold showed prominent labeling of the crystalline cores, with no reaction in the surrounding peroxisomal matrix. In contrast, the core region was spared whereas the matrix was heavily labeled in sections incubated with an antibody against catalase. Direct incubation of cores, isolated by centrifugation, with the anti-uricase antibody followed by protein A-gold revealed gold particles on the surface of isolated cores, with rare particles within the lumen of the polytubular structures that make up the cores. Specificity of the immunolabeling was established in sections incubated with an IgG fraction from pre-immunized rabbits. These observations demonstrate that in normal rat liver urate oxidase is exclusively associated with the crystalline cores in peroxisomes.


1986 ◽  
Vol 34 (7) ◽  
pp. 847-853 ◽  
Author(s):  
D R Abrahamson

Ultrastructural distribution of laminin within renal glomerular (GBM) and tubular basement membranes (TBM) was investigated using post-embedding immunolocalization with colloidal gold. Rat kidneys were fixed with 4% formaldehyde and embedded at 4 degrees C in Lowicryl K4M medium. Thin sections were then sequentially treated with affinity-purified rabbit anti-laminin IgG and anti-rabbit IgG conjugated to 10 nm diameter colloidal gold. Gold bound specifically to the GBM and TBM with particle densities of 690/micron2 and 731/micron2, respectively. In the GBM, the number of gold particles bound/micron2 of lamina densa greater than lamina rara externa greater than lamina rara interna. Closely similar binding patterns were found when kidneys were fixed with 0.5% glutaraldehyde plus 3% formaldehyde and embedded at 60 degrees C in L.R. White resin, but slightly less gold bound to sections overall than that seen with formaldehyde alone and Lowicryl. Taken together, these results illustrate that anti-laminin IgG, whether applied to fixed sections in vitro or introduced in vivo, bound to the lamina rara interna, lamina densa, and lamina rara externa of the GBM and throughout the TBM.


1984 ◽  
Vol 98 (1) ◽  
pp. 358-363 ◽  
Author(s):  
S Fakan ◽  
G Leser ◽  
T E Martin

The ultrastructural distribution of nuclear ribonucleoproteins (RNP) has been investigated by incubation of thin sections of mouse or rat liver, embedded in Lowicryl K4M or prepared by cryoultramicrotomy, with antibodies specific for RNP. The antibodies were localized by means of a protein A-colloidal gold complex. Anti-small nuclear (sn)RNP antibodies, specific for determinants of the nucleoplasmic snRNP species containing U1, U2, U4, U5, and U6 RNAs, were found associated preferentially with perichromatin fibrils, interchromatin granules, and coiled bodies. This indicates an early association of snRNP with structural constituents containing newly synthesized heterogeneous nuclear RNA. It also suggests a possible structural role of some snRNPs in nuclear architecture. Antibodies against the core proteins of heterogeneous nuclear RNP particles associate preferentially with the border regions of condensed chromatin, and in particular with perichromatin fibrils and some perichromatin granules. These results are discussed in view of recent knowledge about the possible role of nucleoplasmic RNP-containing components in the functions of the cell nucleus.


1986 ◽  
Vol 34 (7) ◽  
pp. 913-922 ◽  
Author(s):  
E Knecht ◽  
A Martinez-Ramon ◽  
S Grisolia

Glutamate dehydrogenase (GDH) was localized in rat liver by indirect electron microscopic immunogold, using different sizes of gold particles and monoclonal and polyclonal antibodies. Using the protein A-gold technique in double immunocytochemical experiments, both antibodies, at their optimal dilutions, gave similar results. A novel assessment of the distribution of GDH was made by measurements of the number of gold particles per square micrometer of cross-sectional images of individual mitochondria. The data indicate intracellular homogeneity among mitochondria in individual parenchymal cells. The enzyme is almost absent in non-parenchymal cells. Finally, GDH was found mainly in association with the mitochondrial inner membrane.


1985 ◽  
Vol 100 (1) ◽  
pp. 118-125 ◽  
Author(s):  
J Roth ◽  
M J Lentze ◽  
E G Berger

Galactosyltransferase immunoreactive sites were localized in human duodenal enterocytes by the protein A-gold technique on thin sections from low temperature Lowicryl K4M embedded biopsy specimens. Antigenic sites detected with affinity-purified, monospecific antibodies were found at the plasma membrane of absorptive enterocytes with the most intense labeling appearing along the brush border membrane. The lateral plasma membrane exhibited a lower degree of labeling at the level of the junctional complexes but the membrane interdigitations were intensely labeled. The labeling intensity decreased progressively towards the basal part of the enterocytes and reached the lowest degree along the basal plasma membrane. Quantitative evaluation of the distribution of gold-particle label proved its preferential orientation to the outer surface of the plasma membrane. In addition to this membrane-associated labeling, the glycocalyx extending from the microvillus tips was heavily labeled. Occasionally, cells without plasma membrane labeling were found adjacent to positive cells. The demonstration of ecto-galactosyltransferase on membranes other than Golgi membranes precludes its general use as a marker for Golgi membrane fractions. The possible function of galactosyltransferase on a luminal plasma membrane is unclear at present, but a role in adhesion appears possible on the basolateral plasma membrane.


1992 ◽  
Vol 40 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Y Fukui ◽  
A Yamamoto ◽  
R Masaki ◽  
K Miyauchi ◽  
Y Tashiro

We examined whether induction of the phenobarbital (PB)-inducible form of cytochrome P450 (P450IIB) in rat hepatocytes could be analyzed quantitatively by immunogold electron microscopy. Rats received intraperitoneal injections of PB every 24 hr and livers at the various stages of PB induction were fixed by perfusion with a mixture of paraformaldehyde (4%) and glutaraldehyde (0.1%) and embedded in LR White. Ultra-thin sections were cut and labeled by the protein A-gold procedure using affinity-purified anti-P450IIB antibody which was previously immunoabsorbed with liver microsomes from a control rat (not treated with PB). We counted the number of gold particles per micron of the rough ER membranes (particle density). Before PB treatment, the particle density of the rough ER in rat hepatocytes was practically zero and increased markedly at 48 and 72 hr after PB treatment. The rough microsomes were prepared from these PB-treated rat livers. The amount of P450IIB was estimated by immunoblot analysis and the number of gold particles bound to the rough microsomal membrane was determined by the same post-embedding immunogold procedure. The particle density of the rough microsomes increased in parallel with the increase in the amount of P450IIB, indicating good correlation of the two variables. Thus, the induction of cytochrome P450IIB can be quantitatively and reliably investigated by immunogold electron microscopy.


1986 ◽  
Vol 34 (12) ◽  
pp. 1709-1718 ◽  
Author(s):  
N Usuda ◽  
S Yokota ◽  
T Hashimoto ◽  
T Nagata

Light and electron microscopic localizations of D-amino acid oxidase (DAO) in rat kidney was investigated using immunoenzyme and protein A-gold techniques. The enzyme was purified from rat kidney homogenate and its antibody was raised in rabbits. By Ouchterlony double-diffusion analysis and immunoblot analysis with anti-(rat kidney DAO) immunoglobulin, the antibody was confirmed to be monospecific. The tissue sections (200 micron thick) of fixed rat kidney were embedded in Epon or Lowicryl K4M. Semi-thin sections were stained for DAO by the immunoenzyme technique after removal of epoxy resin for LM, and ultra-thin sections of Lowicryl-embedded material were labeled for DAO by the protein A-gold technique for EM. By LM, fine cytoplasmic granules of proximal tubule were stained exclusively. Among three segments of proximal tubules, and S2 and S3 segments were heavily stained but the S1 segment only weakly so. By EM, gold particles indicating the antigenic sites for DAO were exclusively confined to peroxisomes. Within peroxisomes, the gold particles were localized in the central clear matrix but not in the peripheral tubular substructures. The results indicate that D-amino acid oxidase in rat kidney is present exclusively in peroxisomes in the proximal tubule and that within peroxisomes it is found only in central clear matrix and not in the peripheral tubular substructures.


1992 ◽  
Vol 40 (6) ◽  
pp. 751-758 ◽  
Author(s):  
P Lea ◽  
D K Gross

High-voltage (15-30 kV) field emission scanning electron microscopy (FESEM) was used to evaluate the effects of gold particle size and protein concentration on the formation of protein-gold complexes. Six colloidal gold sols were prepared, ranging in diameter from 7.6 to 39.8 nm. The minimal protecting amounts (m.p.a.) of protein A and goat anti-rabbit antibody (GAR) were experimentally determined. Gold particles were conjugated at the m.p.a., one half the m.p.a., and ten times the m.p.a. for both proteins, and protein-gold complexes prepared for FESEM. The smallest colloidal gold particles required the most protein per milliliter of gold suspension for stabilization. Transmission electron microscopy was found to be the preferred method for accurate sizing of gold particles, whereas FESEM of protein-gold complexes permitted visualization of a protein halo around a spherical gold core. Protein halo width varied significantly with changes in gold particle size. Measurements of protein halos indicated that conjugation with the m.p.a. of protein A resulted in the thickest protein layers for all gold sizes. GAR conjugation with the m.p.a. again produced the thickest protein layers. However, GAR halos were significantly smaller than those obtained with protein A conjugation. The proteins used showed similar adsorption patterns for the larger gold particles. For smaller gold particles, proteins may act differently, and these complexes should be further characterized by low-voltage FESEM.


Sign in / Sign up

Export Citation Format

Share Document