Simulation of heat dissipation with phase change material for cylindrical power battery

2012 ◽  
Vol 85 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Z H Rao ◽  
S F Wang ◽  
Y L Zhang
Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1937 ◽  
Author(s):  
Chuan-Wei Zhang ◽  
Shang-Rui Chen ◽  
Huai-Bin Gao ◽  
Ke-Jun Xu ◽  
Zhan Xia ◽  
...  

Scientific and reasonable battery thermal management systems contribute to improve the performance of a power battery, prolong its life of service, and improve its safety. Based on TAFEL-LAE895 type 100Ah ternary lithium ion power battery, this paper is conducted on charging and discharging experiments at different rates to study the rise of temperature and the uniformity of the battery. Paraffin can be used to reduce the surface temperature of the battery, while expanded graphite (EG) is added to improve the thermal conductivity and viscosity of the composite phase change material (CPCM), and to reduce the fluidity after melting. With the increase of graphite content, the heat storage capacity of phase change material (PCM) decreases, which affects the thermal management effect directly. Therefore, this paper combines heat pipe and semiconductor refrigeration technology to transform heat from the inner CPCM to the thermoelectric cooling sheet for heat dissipation. The results show that the surface temperature of the battery can be kept within a reasonable range when discharging at high rate. The temperature uniformity of the battery is improved and the energy of the battery is saved.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qilong Cheng ◽  
Sukumar Rajauria ◽  
Erhard Schreck ◽  
Robert Smith ◽  
Na Wang ◽  
...  

AbstractThe microelectronics industry is pushing the fundamental limit on the physical size of individual elements to produce faster and more powerful integrated chips. These chips have nanoscale features that dissipate power resulting in nanoscale hotspots leading to device failures. To understand the reliability impact of the hotspots, the device needs to be tested under the actual operating conditions. Therefore, the development of high-resolution thermometry techniques is required to understand the heat dissipation processes during the device operation. Recently, several thermometry techniques have been proposed, such as radiation thermometry, thermocouple based contact thermometry, scanning thermal microscopy, scanning transmission electron microscopy and transition based threshold thermometers. However, most of these techniques have limitations including the need for extensive calibration, perturbation of the actual device temperature, low throughput, and the use of ultra-high vacuum. Here, we present a facile technique, which uses a thin film contact thermometer based on the phase change material $$Ge_2 Sb_2 Te_5$$ G e 2 S b 2 T e 5 , to precisely map thermal contours from the nanoscale to the microscale. $$Ge_2 Sb_2 Te_5$$ G e 2 S b 2 T e 5 undergoes a crystalline transition at $$\hbox {T}_{{g}}$$ T g with large changes in its electric conductivity, optical reflectivity and density. Using this approach, we map the surface temperature of a nanowire and an embedded micro-heater on the same chip where the scales of the temperature contours differ by three orders of magnitude. The spatial resolution can be as high as 20 nanometers thanks to the continuous nature of the thin film.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2164
Author(s):  
H.M. Shih ◽  
Yi-Pin Lin ◽  
L.P. Lin ◽  
Chi-Ming Lai

In this study, a heat management module containing a microencapsulated phase change material (mPCM) was fabricated from mPCM (core material: paraffin; melting temperature: 37 °C) and aluminum honeycomb structures (8 mm core cell). The aluminum honeycomb functioned both as structural support and as a heat transfer channel. The thermal management performance of the proposed module under constant-temperature boundary conditions was investigated experimentally. The thermal protection period of the module decreased as the Stefan number increased; however, increasing the subcooling factor could effectively enhance the thermal protection performance. When the cold-wall temperature TC was fixed at 17 °C and the initial hot wall temperature was 47–67 °C, the heat dissipation of the module was complete 140 min after the hot-wall heat supply was stopped. The time required to complete the heat dissipation increased to 280 min when TC increased to 27 °C.


2018 ◽  
Vol 162 ◽  
pp. 05026
Author(s):  
Naseer Alharbawee

The present study aims to make a comparison of the thermal behaviour for various exterior Packaging materials (Local or Imported) or a new proposed (a phase change material), which are used in covering the facades of buildings in Kirkuk city/Iraq. And thus know how much those materials effect on energy conservation (rationalization in energy consumption). In this study the focus was on making comparison of heat dissipation and power consumption (Save energy) when using the conventional and proposed materials and which of them has the greatest ability to withstand various environmental conditions. The study was carried out (from the beginning of January 2017 until the end of February, 2017) which this period represents the cold months in the year. (Where temperatures ranged from−2 to 15 °C) which within those months all facilities, buildings need to be heated. The thermal conductivity of various classical covering materials samples was measured and compared with the values of the other certified project sources. It was found through analysis of the results that the use of proposed material which is a phase change material (Paraffin Wax) exceeds in terms of energy reduction than other classical covering materials. It was also shows that the use of classical and proposed covering materials reduces heat loss through the exterior walls (reducing demanded heating load in the comfort zone), thus minimizing the consumption of (save) expended energy within the comfort.


Author(s):  
Andrew H. Rosenthal ◽  
Bruna P. Gonçalves ◽  
J. A. Beckwith ◽  
Rohit Gulati ◽  
Marc D. Compere ◽  
...  

This paper investigates the use of phase-change material (PCM) for temperature regulation of a rack-mounted photovoltaic (PV) solar panel. PV panels exhibit a significant decrease in electrical efficiency as temperature trends higher. Current PV panels are approximately 10–16% efficient at harnessing incident solar irradiation into effective electrical power. The remaining solar irradiation that is not converted to electricity will heat the PV panel and decrease efficiency. Using PCM for temperature regulation and temporary heat storage in photovoltaic/thermal systems (PVT) is an emerging technology that has attracted attention recently. The PCM absorbs heat and regulates peak temperature, which allows the PV panel to operate at lower temperatures during peak solar conditions. Further, the waste heat stored in the PCM can be used for other applications. The main focus of this paper is to experimentally evaluate the heat dissipation of four different PCM containment configurations from a simulated PV panel.


Sign in / Sign up

Export Citation Format

Share Document