scholarly journals Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3902-3909 ◽  
Author(s):  
Hsiu-Hui Chen ◽  
Cristina P. Vicente ◽  
Li He ◽  
Douglas M. Tollefsen ◽  
Tze-Chein Wun

AbstractThe anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents.

1994 ◽  
Vol 303 (3) ◽  
pp. 923-928 ◽  
Author(s):  
T J Girard ◽  
D Gailani ◽  
G J Broze

Tissue factor pathway inhibitor (TFPI) is a factor Xa-dependent inhibitor of the factor VIIa-tissue factor complex of blood coagulation. The primary amino acid sequence of canine TFPI has been deduced from cDNA sequences obtained using the techniques of reverse transcription followed by amplification using PCR and conventional screening of a canine endothelial cell cDNA library. The open reading frame for canine TFPI encodes a signal peptide of 28 amino acids followed by a 40.7 kDa protein of 368 amino acids. Similar to human, rat and rabbit TFPI, canine TFPI contains a negatively-charged cluster of amino acids at its mature amino-terminus, followed by three Kunitz-type proteinase inhibitory domains and a cluster of positively-charged amino acids near its carboxy-terminus. In contrast to other TFPIs, following its second Kunitz-type proteinase inhibitory domain canine TFPI contains an additional amino acid insert which includes a nanomeric peptide-sequence repeated six times. Recombinant canine TFPI was expressed in both bacterial- and insect cell-expression systems for functional analysis and the generation of antibodies. The recombinant canine TFPI inhibits tissue factor-induced coagulation in an in vitro canine system. Immunoprecipitation of TFPI from canine plasma, followed by Western-blot analysis, tentatively identifies canine TFPI as an 80,000 kDa protein. Anti-peptide antibodies raised to the nanomeric peptide repeat immunoprecipitate an identical, cross-reactive, 80,000 kDa protein.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4268-4274 ◽  
Author(s):  
C. Thomas Park ◽  
Abla A. Creasey ◽  
Samuel D. Wright

Abstract Tissue factor pathway inhibitor (TFPI) is a Kunitz-type plasma protease inhibitor that inhibits factor Xa and the factor VIIa/tissue factor catalytic complex. It plays an important role in feedback inhibition of the coagulation cascade (Broze, Annu Rev Med 46:103, 1995). TFPI has also been used successfully to prevent lethality and attenuate coagulopathic responses in a baboon model of septic shock (Creasey et al, J Clin Invest 91:2850, 1993; and Carr et al, Circ Shock 44:126, 1995). However, the mechanism of reduced mortality in these animals could not be explained merely by the anticoagulant effect of TFPI, because TFPI-treated animals also had a significantly depressed interleukin-6 response. Moreover, inhibition of coagulopathic responses by other anticoagulants has failed to block the organ damage or lethal effect of endotoxic shock (Coalson et al, Circ Shock 5:423, 1978; Warr et al, Blood 75:1481, 1990; and Taylor et al, Blood 78:364, 1991). We show here that recombinant TFPI can bind to endotoxin in vitro. This binding prevents interaction of endotoxin with both lipopolysaccharide binding protein and CD14, thereby blocking cellular responses.


2000 ◽  
Vol 84 (10) ◽  
pp. 653-656 ◽  
Author(s):  
Irene Salemink ◽  
Ron Blezer ◽  
George Willems ◽  
Monica Galli ◽  
Edouard Bevers ◽  
...  

SummaryAnionic phospholipid membranes have a dual role in blood coagulation: they are essential for the initiation and propagation as well as for the limitation and termination of the blood coagulation process. Patients with the anti-phospholipid syndrome (APS) carrying antibodies against complexes of anionic phospholipids and plasma proteins, show in vitro inhibited phospholipid dependent coagulation reactions, whereas in vivo the presence of these antibodies is associated with an increased risk of thrombosis. In this study we focussed on the effects of these anti-phospholipid antibodies on the regulation of TF-mediated factor Xa (FXa) generation in plasma. We hypothesized that anti-phospholipid antibodies interfere with the phospholipiddependent inhibition by tissue factor pathway inhibitor (TFPI) of TFinduced coagulation. Indeed, total-IgG, anti-cardiolipin-IgG (aCL) and anti-β2GPI-IgG, isolated from patient plasmas, all stimulated TF-induced FXa generation in normal plasma. This enhanced FXa generation was not observed when the patient’s IgG was depleted of anti-β2GPI-IgG or when normal plasma was depleted of β2GPI or TFPI. Taken together, these data indicate that antibodies to β2GPI, circulating in patients with APS, suppress TFPI-dependent inhibition of TF-induced coagulation, which results in an increased FXa generation.


1994 ◽  
Vol 72 (06) ◽  
pp. 848-855 ◽  
Author(s):  
Dzung The Le ◽  
Samuel I Rapaport ◽  
L Vijaya Mohan Rao

SummaryFibroblast monolayers constitutively expressing surface membrane tissue factor (TF) were treated with 0.1 mM N-ethylmaleimide (NEM) for 1 min to inhibit aminophospholipid translocase activity without inducing general cell damage. This resulted in increased anionic phospholipid in the outer leaflet of the cell surface membrane as measured by the binding of 125I-annexin V and by the ability of the monolayers to support the generation of prothrombinase. Specific binding of 125I-rVIIa to TF on NEM-treated monolayers was increased 3- to 4-fold over control monolayers after only brief exposure to 125I-rVIIa, but this difference progressively diminished with longer exposure times. A brief exposure of NEM-treated monolayers to rVIIa led to a maximum 3- to 4-fold enhancement of VIIa/TF catalytic activity towards factor X over control monolayers, but, in contrast to the binding studies, this 3- to 4-fold difference persisted despite increasing time of exposure to rVIIa. Adding prothrombin fragment 1 failed to diminish the enhanced VIIa/TF activation of factor X of NEM-treated monolayers. Moreover, adding annexin V, which was shown to abolish the ability of NEM to enhance factor X binding to the fibroblast monolayers, also failed to diminish the enhanced VIIa/TF activation of factor X. These data provide new evidence for a possible mechanism by which availability of anionic phospholipid in the outer layer of the cell membrane limits formation of functional VIIa/TF complexes on cell surfaces.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


2005 ◽  
Vol 280 (23) ◽  
pp. 22308-22317 ◽  
Author(s):  
Cristina Lupu ◽  
Xiaohong Hu ◽  
Florea Lupu

Tissue factor pathway inhibitor (TFPI) blocks tissue factor-factor VIIa (TF-FVIIa) activation of factors X and IX through the formation of the TF-FVIIa-FXa-TFPI complex. Most TFPI in vivo associates with caveolae in endothelial cells (EC). The mechanism of this association and the anticoagulant role of caveolar TFPI are not yet known. Here we show that expression of caveolin-1 (Cav-1) in 293 cells keeps TFPI exposed on the plasmalemma surface, decreases the membrane lateral mobility of TFPI, and increases the TFPI-dependent inhibition of TF-FVIIa. Caveolae-associated TFPI supports the co-localization of the quaternary complex with caveolae. To investigate the significance of these observations for EC we used RNA interference to deplete the cells of Cav-1. Functional assays and fluorescence microscopy revealed that the inhibitory properties of TFPI were diminished in EC lacking Cav-1, apparently through deficient assembly of the quaternary complex. These findings demonstrate that caveolae regulate the inhibition by cell-bound TFPI of the active protease production by the extrinsic pathway of coagulation.


2008 ◽  
Vol 99 (03) ◽  
pp. 576-585 ◽  
Author(s):  
Mathieu Provençal ◽  
Marisol Michaud ◽  
Édith Beaulieu ◽  
David Ratel ◽  
Georges-Étienne Rivard ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document