scholarly journals Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification

Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1264-1273 ◽  
Author(s):  
Melanie G. Cornejo ◽  
Vinciane Mabialah ◽  
Stephen M. Sykes ◽  
Tulasi Khandan ◽  
Cristina Lo Celso ◽  
...  

Abstract The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.

2009 ◽  
Vol 30 (4) ◽  
pp. 886-896 ◽  
Author(s):  
Stefano Zanotti ◽  
Ernesto Canalis

ABSTRACT Notch receptors are transmembrane receptors that regulate cell fate decisions. There are four Notch receptors in mammals. Upon binding to members of the Delta and Jagged family of transmembrane proteins, Notch is cleaved and the Notch intracellular domain (NICD) is released. NICD then translocates to the nucleus, where it associates with the CBF-1, Suppressor of Hairless, and Lag-2 (CSL) and Mastermind-Like (MAML) proteins. This complex activates the transcription of Notch target genes, such as Hairy Enhancer of Split (Hes) and Hes-related with YRPF motif (Hey). Notch signaling is critical for the regulation of mesenchymal stem cell differentiation. Misexpression of Notch in skeletal tissue indicates a role as an inhibitor of skeletal development and postnatal bone formation. Overexpression of Notch inhibits endochondral bone formation and osteoblastic differentiation, causing severe osteopenia. Conditional inactivation of Notch in the skeleton causes an increase in cancellous bone volume and enhanced osteoblastic differentiation. Notch ligands are expressed in the hematopoietic stem cell niche and are critical for the regulation of hematopoietic stem cell self-renewal. Dysregulation of Notch signaling is the underlying cause of diseases affecting the skeletal tissue, including Alagille syndrome, spondylocostal dysostosis, and possibly, osteosarcoma.


2013 ◽  
Vol 191 (5) ◽  
pp. 2806-2817 ◽  
Author(s):  
Wei Du ◽  
Surya Amarachintha ◽  
Jared Sipple ◽  
Jonathan Schick ◽  
Kris Steinbrecher ◽  
...  

2018 ◽  
Vol 25 (35) ◽  
pp. 4535-4544 ◽  
Author(s):  
Annalisa Ruggeri ◽  
Annalisa Paviglianiti ◽  
Fernanda Volt ◽  
Chantal Kenzey ◽  
Hanadi Rafii ◽  
...  

Background: Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells not associated with vessel walls and detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and other diseases. Objective: This review aims to provide an overview on the characterization of CECs and EPCs, to describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Methods: We performed a detailed search of peer-reviewed literature using keywords related to CECs, EPCs, allogeneic hematopoietic stem cell transplantation, and hematological diseases (hemoglobinopathies, hodgkin and non-hodgkin lymphoma, acute leukemia, myeloproliferative syndromes, chronic lymphocytic leukemia). Results: CECs and EPCs are potential biomarkers for several clinical conditions involving endothelial turnover and remodeling, such as in hematological diseases. These cells may be involved in disease progression and in the neoplastic process. Moreover, CECs and EPCs are probably involved in endothelial damage which is a marker of several complications following allogeneic hematopoietic stem cell transplantation. Conclusion: This review provides information about the role of CECs and EPCs in hematological malignancies and shows their implication in predicting disease activity as well as improving HSCT outcomes.


Sign in / Sign up

Export Citation Format

Share Document