scholarly journals Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia

Blood ◽  
2011 ◽  
Vol 118 (17) ◽  
pp. 4674-4681 ◽  
Author(s):  
Georg Aue ◽  
Yang Du ◽  
Susan M. Cleveland ◽  
Stephen B. Smith ◽  
Utpal P. Davé ◽  
...  

Abstract Cooperation of multiple mutations is thought to be required for cancer development. In previous studies, murine myeloid leukemias induced by transducing wild-type bone marrow progenitors with a SRY sex determining region Y-box 4 (Sox4)–expressing retrovirus frequently carried proviral insertions at Sfpi1, decreasing its mRNA levels, suggesting that reduced Sfpi1 expression cooperates with Sox4 in myeloid leukemia induction. In support of this hypothesis, we show here that mice receiving Sox4 virus-infected Sfpi1ko/+ bone marrow progenitors developed myeloid leukemia with increased penetrance and shortened latency. Interestingly, Sox4 expression further decreased Sfpi1 transcription. Ectopic SOX4 expression reduced endogenous PU.1 mRNA levels in HL60 promyelocytes, and decreased Sfpi1 mRNA levels were also observed in the spleens of leukemic and preleukemic mice receiving Sox4 virus-infected wild-type bone marrow cells. In addition, Sox4 protein bound to a critical upstream regulatory element of Sfpi1 in ChIP assays. Such cooperation probably occurs in de novo human acute myeloid leukemias, as an analysis of 285 acute myeloid leukemia patient samples found a significant negative correlation between SOX4 and PU.1 expression. Our results establish a novel cooperation between Sox4 and reduced Sfpi1 expression in myeloid leukemia development and suggest that SOX4 could be an important new therapeutic target in human acute myeloid leukemia.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2633-2633
Author(s):  
Georg Aue ◽  
Yang Du ◽  
Nancy A. Jenkins ◽  
Cynthia E. Dunbar ◽  
Neal G. Copeland

Abstract Mice that express 20% the normal levels of the Ets transcription factor PU.1 develop AML, unlike mice that express 50% or 80% the normal levels, indicating that PU.1 is a dosage-sensitive tumor suppressor gene. In addition, 3 of 13 AMLs induced by transplanting mice with cells transduced with a Sox4 oncogene-containing retrovirus were found to carry a Sox4 retroviral integration in one PU.1 allele, suggesting that downregulation of PU.1 may cooperate with Sox4 in AML induction. Since the other PU.1 allele remains intact in these AMLs and a 50% decrease in PU.1 expression is not sufficient to induce AML, we hypothesized that Sox4 might further downregulate PU.1 expression in these AMLs. To test this hypothesis, we transfected HL60 cells with an expression vector carrying GFP and Sox4 cDNA or a GFP vector control alone. PU.1 mRNA levels were consistently downregulated 4 to 10 fold in cells transfected with Sox4 cDNA compared to cells transfected with the vector control, confirming that overexpression of Sox4 downregulates PU.1 expression in myeloid cells. The decrease of PU.1 mRNA was observed as early as 8 hours after Sox4 transfection, further suggesting that Sox4 may directly interact with PU.1 in myeloid cells. Consistent with this, analysis of 2 published microarray databases comprising 401 de novo AML patient samples showed that SOX4 expression is significantly negatively correlated with PU.1 expression (coefficient: −0.337, P-value: 1E-07). In order to confirm that downregulation of PU.1 cooperates with Sox4 in AML induction, we infected wild type or PU.1 heterozygous knockout bone marrow cells with the Sox4 retrovirus and then monitored the time of AML development in transplanted mice. Results showed increased penetrance (95%) of myeloid leukemia in mice transplanted with Sox4-infected PU +/– bone marrow compared to mice receiving Sox4-infected wild type marrow (60%). Myeloid leukemia was confirmed by histology in all animals of the Sox4-infected PU +/ cohort while T cell lymphoma was diagnosed in 3 animals of the Sox4 wild type cohort. Together, all experiments support the hypothesis that Sox4 cooperates with the transcription factor PU.1.


Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2387-2392 ◽  
Author(s):  
Lee-Yung Shih ◽  
Chein-Fuang Huang ◽  
Jin-Hou Wu ◽  
Tung-Liang Lin ◽  
Po Dunn ◽  
...  

Analysis of internal tandem duplications of FLT3(FLT3/ITD) was performed on bone marrow samples obtained at diagnosis and relapse from 108 adult patients with de novo acute myeloid leukemia (AML) to determine the role of this mutation in leukemic relapse. Eighty-three patients had wild-type FLT3at both diagnosis and relapse, 16 had FLT3/ITD at both stages, whereas 8 had acquired the mutation and 1 had lost it at relapse. Using Genescan analysis, we found that FLT3/ITD levels at first relapse were significantly higher than those at diagnosis (mean ± SE, 40.5% ± 4.8% versus 17.9% ± 3.6%,P < .001). The increase in mutation levels at relapse as compared with diagnosis did not correlate with the difference in blast cell percentages at both stages (P = .777). A hemizygous deletion of wild-type FLT3 was found in 4 patients at relapse compared to none at diagnosis. Nine of the 11 patients carrying a single mutation at diagnosis relapsed with an identical mutation. All 6 patients with more than one FLT3/ITD mutation at diagnosis showed changes in mutation patterns and levels at first relapse; however, each patient retained at least one mutation in the relapse sample. The changes of mutation patterns had implications for the monitoring of minimal residual disease. Our results suggest thatFLT3/ITD may contribute as the initial transforming event in AML, and relapse can reflect the selection and outgrowth of a mutant clone or evolution of a new clone harboring this mutation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2217-2217
Author(s):  
Georg Aue ◽  
Yang Du ◽  
Cynthia E. Dunbar ◽  
Nancy A. Jenkins ◽  
Neal G. Copeland

Abstract Mice that express 20% the normal levels of the Ets transcription factor PU.1 develop AML, unlike mice that express 50% or 80% the normal levels, indicating that PU.1 is a dosage-sensitive tumor suppressor gene. In addition, 3 of 13 AMLs induced by transplanting mice with cells transduced with a Sox4 oncogene-containing retrovirus were found to carry a Sox4 retroviral integration in one PU.1 allele, suggesting that downregulation of PU.1 may cooperate with Sox4 in AML induction. Since the other PU.1 allele remains intact in these AMLs and a 50% decrease in PU.1 expression is not sufficient to induce AML, we hypothesized that Sox4 might further downregulate PU.1 expression in these AMLs. To test this hypothesis, we transfected HL60 promyelocytes with an expression vector carrying both GFP and Sox4 cDNAs or a GFP vector control. Transfected GFP+ cells were purified by flow cytometry and PU.1 mRNA levels were analyzed by real-time RT-PCR. PU.1 mRNA levels were consistently downregulated 4 to 10 fold in cells transfected with Sox4 cDNA compared to cells transfected with the vector control, while β-actin mRNA levels were maintained constant, confirming that overexpression of Sox4 downregulates PU.1 expression in myeloid cells. The decrease of PU.1 mRNA was observed as early as 8 hours after Sox4 transfection, further suggesting that Sox4 may directly repress the PU.1 promoter in myeloid cells. Consistent with this, analysis of 2 published microarray databases comprising 401 de novo AML patient samples showed that SOX4 expression is significantly negatively correlated with PU.1 expression (coefficient: −0.337, P-value: 1E-07). Interestingly, AML FAB M1 and M2 subtypes were associated with statistically significant higher SOX4 expression levels compared to AML FAB M3, M4, M5. In order to confirm that downregulation of PU.1 cooperates with Sox4 in AML induction, we infected wild type or PU.1 heterozygous knockout bone marrow cells with the Sox4 retrovirus and then monitored the time of AML development in transplanted mice. Early results show accelerated leukemogenesis in mice transplanted with Sox4-infected PU +/− bone marrow (115 days) compared to mice receiving Sox4-infected wild type marrow (160 days). We are currently trying to identify Sox4 binding sites in the PU.1 promoter, or in an upper regulatory element that may be responsible for mediating the repression of PU.1.


2006 ◽  
Vol 130 (7) ◽  
pp. 997-1003
Author(s):  
Randall J. Olsen ◽  
Zhouwen Tang ◽  
Daniel H. Farkas ◽  
David W. Bernard ◽  
Youli Zu ◽  
...  

Abstract Context.—A specific mutation, JAK2V617F, was recently recognized as having diagnostic value for myeloproliferative disorders. No practical assay is currently available for routine use in a clinical laboratory. Objective.—We report the development of a real-time polymerase chain reaction melting curve analysis assay that is appropriate for molecular diagnostics testing. Design.—Specific primers and fluorescence resonance energy transfer probes were designed, and patients with a previously diagnosed myeloproliferative disorder, de novo acute myeloid leukemia, or reactive condition were selected. The DNA was extracted from fresh and archived peripheral blood and bone marrow specimens, and real-time polymerase chain reaction melting curve analysis was performed on the LightCycler platform (Roche Applied Science, Indianapolis, Ind). Results.—The JAK2 region was successfully amplified, and wild-type amplicons were reproducibly discriminated from JAK2V617F amplicons. Titration studies using homozygous wild-type and mutant cell lines showed the relative areas under a melting curve were proportional to allele proportion, and the assay reliably detected one mutant in 20 total cells. JAK2V617F was identified in patients previously diagnosed with a myeloproliferative disorder or acute myeloid leukemia transformed from myeloproliferative disorder, whereas a wild-type genotype was identified in patients with reactive conditions or de novo acute myeloid leukemia. Conclusions.—These findings demonstrate the suitability of this assay for identifying JAK2V617F in a clinical laboratory setting. Furthermore, the semiquantitative detection of JAK2V617F in archived specimens provides a new tool for studying the prognostic significance of this mutation.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Chong Wang ◽  
Lingling Li ◽  
Mengya Li ◽  
Weiqiong Wang ◽  
Yanfang Liu ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are biomarkers participating in multiple disease development including acute myeloid leukemia (AML). Here, we investigated molecular mechanism of X Inactive-Specific Transcript (XIST) in regulating cellular viability, apoptosis and drug resistance in AML. Methods XIST, miR-29a and myelocytomatosis oncogene (MYC) expression in AML bone marrow cells collected from 62 patients was evaluated by RT-qPCR and Western blot analysis. Besides, the relationship among XIST, miR-29a and MYC was analyzed by dual luciferase reporter assay, RIP, and RNA pull down assays. AML KG-1 cells were treated with anti-tumor drug Adriamycin. The role of XIST/miR-29a/MYC in cellular viability, apoptosis and drug resistance in AML was accessed via gain- and loss-of-function approaches. At last, we evaluated role of XIST/miR-29a/MYC on tumorigenesis in vivo. Results XIST and MYC were up-regulated, and miR-29a was down-regulated in AML bone marrow cells. Silencing XIST inhibited cellular activity and drug resistance but promoted cellular apoptosis of KG-1 cells by down-regulating MYC. XIST inhibited miR-29a expression to up-regulate MYC. Moreover, silencing XIST inhibited tumorigenesis of AML cells in vivo. Conclusions Overall, down-regulation of XIST decreased MYC expression through releasing the inhibition on miR-29a, thereby reducing drug resistance, inhibiting viability and promoting apoptosis of AML cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4515-4515
Author(s):  
Si Sun ◽  
Yanli He ◽  
Xingbing Wang ◽  
Wei Liu ◽  
Jun Liu ◽  
...  

Abstract The insulin-like growth factor-1receptor (IGF-1R) is overexpressed in a variety of tumors and has been associated with cancer development. Here, we analysis the IGF-IR expression on the bone marrow cells from 45 newly diagnosed patients with acute myeloid leukemia (AML) by flow cytometry. IGF-1R universally expressed on AML blasts and the leukemia cell line HL-60, did not show significant correlation with FAB subtypes. However, the bone marrow cells from AML patients with high myeloblast counts (&gt;80%) generally showed brighter IGF-IR expressions, which indicated the IGF-IR pathway might play an important role for AML blast proliferation and survival. Indeed, blocking the IGF-1R pathway by neutralizing monoclonal antibodies could reduce the proliferation of HL-60 cells by 38.28% at 48 hr. This inhibitory effect on blast growth was observed in 4 of 5 AML samples. In the same IGF-1R blocking treatment, the apoptosis of HL-60 cells was significantly induced, resulting in apoptosis of 57% of the cell population with the measurement of Annexin V vs PI staining by flow cytometry. The control contained only 20% apoptotic cells. We also demonstrated that the blockade of the IGF-1R pathway inhibited the phophorylation of the PI3K pathway component Akt in HL-60 cells when cultured in a serum free system with a supplement of 50ng/ml exogenous IGF. Since PI3K pathway activation greatly contributes to the proliferation, survival and drug resistance of AML, it is of interest to study whether blockading IGF-IR could also inhibit the PI3K pathway in primary AML blasts and synergize other anti-leukemia agents to improve the therapeutic effectiveness. Conclusions: IGF-IR may play an important role in the proliferation and survival of the AML blast population; Blocking the IGF-IR pathway could significantly inhibit the growth of AML blasts and considerably induce the apoptosis of AML blasts; IGF-IR could become a critical molecular target in anti-leukemia drug discovery.


Sign in / Sign up

Export Citation Format

Share Document