scholarly journals OSU-T315: a novel targeted therapeutic that antagonizes AKT membrane localization and activation of chronic lymphocytic leukemia cells

Blood ◽  
2015 ◽  
Vol 125 (2) ◽  
pp. 284-295 ◽  
Author(s):  
Ta-Ming Liu ◽  
Yonghua Ling ◽  
Jennifer A. Woyach ◽  
Kyle Beckwith ◽  
Yuh-Ying Yeh ◽  
...  

Key Points OSU-T315 impedes AKT localization in lipid rafts. OSU-T315 shows in vitro and in vivo therapeutic effects.

Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 582-595 ◽  
Author(s):  
Marwan Kwok ◽  
Nicholas Davies ◽  
Angelo Agathanggelou ◽  
Edward Smith ◽  
Ceri Oldreive ◽  
...  

Key PointsATR inhibition is synthetically lethal to TP53- or ATM-defective CLL cells. ATR targeting induces selective cytotoxicity and chemosensitization in TP53- or ATM-defective CLL cells in vitro and in vivo.


2016 ◽  
Vol 44 (1) ◽  
pp. 38-49.e1 ◽  
Author(s):  
Sandra Eketorp Sylvan ◽  
Henriette Skribek ◽  
Stefan Norin ◽  
Orsolya Muhari ◽  
Anders Österborg ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 248-248
Author(s):  
Alice Bonato ◽  
Riccardo Bomben ◽  
Supriya Chakraborty ◽  
Giulia Felician ◽  
Claudio Martines ◽  
...  

Abstract Inactivating mutations in NF-kB pathway genes, such as the NF-kB inhibitor NFKBIE, are among the more frequent genetic lesions in chronic lymphocytic leukemia (CLL). However, the role of these genetic lesions in CLL pathogenesis and treatment resistance is still largely unknown and requires further study in in vivo models of the disease. To this end, we generated transplantable murine leukemias with inactivating NFKBIE mutations and investigated their impact on leukemia growth and response to ibrutinib (IBR) treatment. The NFKBIE mutations were introduced by CRISPR/Cas9 editing in two recently established autoreactive leukemia lines derived from the Eμ-TCL1 murine CLL model. These cell lines proliferate spontaneously in vitro in a BCR-dependent manner, but also respond with increased proliferation to certain microenvironmental signals, such as those generated by Toll-like receptor (TLR) stimulation (Chakraborty S et al, Blood 2021). To investigate whether NFKBIE mutations can affect the proliferation of these cell lines in vitro, we performed competition experiments with mixed cultures of cells with wild type and mutated NFKBIE. Analysis of the clonal composition after 2 weeks showed no change in the mutant allele frequency (MAF), suggesting that NFKBIE mutations do not affect the spontaneous in vitro growth of the immortalized leukemia cells. However, repeated TLR or BCR stimulation of these cells with CpG-DNA, LPS, anti-IgM or autoantigen resulted in a 2-3 fold increase in MAF, suggesting that NFKBIE mutations provide a growth advantage when the cells are exposed to certain microenvironmental signals (n=3 experiments/condition, P<0.05 for each condition). To investigate the impact of NFKBIE mutations on leukemia growth in vivo, the same cells were transplanted by intraperitoneal injection in wild type mouse recipients (n=8) and the clonal composition was determined 3 weeks later by MAF analysis of cells isolated from peritoneal cavity (PC), blood and spleen. A significant increase in MAF was observed only in leukemia cells isolated from the spleen (P<0.05), suggesting that microenvironmental signals that positively select NFKBIE-mutated cells are available only in certain tissue compartments. Because mutations in other NF-kB pathway genes have been associated with resistance to IBR in mantle cell lymphoma, we next investigated whether NFKBIE mutations can also affect the response to IBR treatment. In vitro BrdU-incorporation experiments showed that IBR inhibits the proliferation of cells with mutated NFKBIE to a significantly lesser extent compared to cells with wild type NFKBIE (% proliferating cells with wild type and mutated NFKBIE, respectively, cultured without IBR: 90% vs 88%, P=n.s., with 0.2 μM IBR: 57% vs 73%, P<0.001, with 1.0 μM IBR: 28% vs 53%, P<0.001). Consistent with this finding, positive selection of NFKBIE-mutated cells was observed in the presence of IBR after 14 days in mixed culture competition experiments (mean MAF without IBR 47%, with 0.2 μM IBR 61%, p=0.032, with 1.0 μM IBR 64%, p=0.034). The greater resistance of NFKBIE-mutated cells to IBR was further validated by in vivo competition experiments showing a significantly greater increase in MAF in mice treated with IBR compared to controls in all three investigated compartments (n=4 mice/group, PC: P=0.029, blood P=0.029, spleen: P=0.001). To validate these findings in the clinical setting, we investigated the presence of NFKBIE mutations in a cohort of 84 IBR-treated CLL patients. Mutations of NFKBIE were detected at pre-treatment in 10/84 patients, 7/10 with >10% VAF values. Kaplan Meier analysis showed a trend towards reduced progression-free and overall survival from the beginning of IBR treatment for NFKBIE-mutated cases (Figure 1A). Analysis of an extended cohort of over 200 cases is ongoing and will be presented at the meeting. Finally, to investigate whether leukemic cells with mutated NFKBIE remain sensitive to other BCR inhibitors, we tested their growth in the presence of the PI3K inhibitor idelalisib or SYK inhibitor fostamatinib (Figure 1B). In contrast to IBR, both drugs inhibited the proliferation of NFKBIE-mutated cells in vitro, with a greater effect observed with idelalisib. Collectively, these data demonstrate that NFKBIE mutations can reduce the response to IBR treatment and suggest that such cases may benefit more from treatment with a PI3K inhibitor. Figure 1 Figure 1. Disclosures Marasca: Janssen: Honoraria, Other: Travel grants; AstraZeneca: Honoraria; AbbVie: Honoraria, Other: Travel grants. Tafuri: Roche: Research Funding; Novartis: Research Funding; Celgene: Research Funding. Laurenti: Janssen: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Roche: Honoraria, Research Funding; Gilead: Honoraria; BeiGene: Honoraria. Gattei: abbVie: Research Funding; Janssen: Research Funding; Menarini: Research Funding.


Neoplasia ◽  
2010 ◽  
Vol 12 (4) ◽  
pp. 326-IN6 ◽  
Author(s):  
Rajesh Kumar Gandhirajan ◽  
Peter Anton Staib ◽  
Katharina Minke ◽  
Iris Gehrke ◽  
Günther Plickert ◽  
...  

2010 ◽  
Vol 16 (7) ◽  
pp. 2046-2054 ◽  
Author(s):  
Faustino Mollinedo ◽  
Janis de la Iglesia-Vicente ◽  
Consuelo Gajate ◽  
Ander Estella-Hermoso de Mendoza ◽  
Janny A. Villa-Pulgarin ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (18) ◽  
pp. 3658-3665 ◽  
Author(s):  
Katrin S. Reiners ◽  
Daniela Topolar ◽  
Alexander Henke ◽  
Venkateswara R. Simhadri ◽  
Jörg Kessler ◽  
...  

Key Points Exosomal NKp30-ligand BAG6 is crucial for detection of tumor cells by NK cells in vitro and in vivo. Soluble plasma factors including BAG6 suppress NK cell cytotoxicity and promote evasion of CLL cells from NK cell anti-tumor activity.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5303-5303
Author(s):  
Suping Zhang ◽  
Hsien Lai ◽  
Grace Liu ◽  
Laura Rassenti ◽  
Michael Y. Choi ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) cells express high levels of CD44, a cell-surface glycoprotein receptor for hyaluronic acid (HA). We found that a mAb specific for CD44 was directly cytotoxic for leukemia B cells, but had little effect on normal B cells. Moreover, this anti-CD44 mAb could induce CLL cells that expressed the zeta-associated protein of 70 kDa (ZAP-70) to undergo caspase-dependent apoptosis, independent of complement or cytotoxic effector cells (Proc Natl Acad Sci, USA 2013, PMID: 23530247). The cytotoxic effect of this mAb was not mitigated when the CLL cells were co-cultured with mesenchymal stromal cells (MSCs) or hyaluronic acid or when they were stimulated via ligation of the B-cell receptor with anti-µ. A6 (Angstrom Pharmaceuticals) is an 8-amino acid peptide that has marked homology with a linear sequence of CD44. A6 can bind CD44 within a region of the ligand-binding domain, leading to inhibition of the migration and metastatic potential of CD44-expressing cancer cells in vitro and in vivo (Mol Cancer Ther, 2011 PMID: 21885863). We evaluated the cytotoxic activity of A6 against primary leukemia cells of patients with CLL (n = 22). We found that A6 peptide also was directly cytotoxic for CLL cells isolated from different patients in a dose-dependent manner at concentrations that may be achieved in vivo. The A6 peptide appeared less cytotoxic for CLL cells than the intact anti-CD44 mAb, but still had greater direct cytotoxicity for CLL cells that expressed ZAP-70 than for CLL cells that were ZAP-70 negative. Furthermore, the A6 peptide had negligible effect on the viability of lymphocytes isolated from the blood of healthy donors (n = 3). Because clinical studies have found the A6 peptide to be well-tolerated and without dose-limiting toxicity in patients with solid tumors who have been treated to date (N = 40), a clinical study is planned to evaluate the safety and activity of the A6 peptide in the treatment of patients with CLL. Disclosures: Howell: Angstrom Phamaceuticals: Membership on an entity’s Board of Directors or advisory committees. Finlayson:Angstrom Phamaceuticals: Employment.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2070-2075 ◽  
Author(s):  
V Gandhi ◽  
B Nowak ◽  
MJ Keating ◽  
W Plunkett

Abstract Our previous studies indicated that K562 cells loaded with arabinosyl-2- fluoroadenine 5′-triphosphate (F-ara-ATP) accumulated arabinosylcytosine 5′-triphosphate (ara-CTP) at a threefold higher rate compared to the control cells. In the present study lymphocytes were obtained from patients with chronic lymphocytic leukemia before and after F-ara-A monophosphate therapy. The rate of ara-CTP accumulation after in vitro ara-C incubation was compared in lymphocytes obtained prior to therapy without any other manipulation, after ex vivo F-ara- ATP (100 mumol/L) treatment, and after in vivo F-ara-A monophosphate therapy. Lymphocytes showed a 2.2-fold (n = 23) and 1.7-fold (n = 23) median increase in the cellular concentration of ara-CTP after an ex vivo incubation with 100 mumol/L F-ara-A and 20 to 24 hours after the first dose (25 or 30 mg/m2) of F-ara-A monophosphate in vivo treatment, respectively. Although the rates of F-ara-ATP and ara-CTP accumulation varied among patients, a relationship was observed in individuals between the cellular concentration of F-ara-ATP at the beginning of the ara-C incubation and ara-CTP accumulation. These studies strongly suggest that a protocol designed to administer F-ara-A monophosphate prior to ara-C infusion will augment ara-CTP accumulation by leukemia cells.


Sign in / Sign up

Export Citation Format

Share Document