scholarly journals The Critical Role of HDAC1-IRF4-Pim-2 Axis in Myeloma Cell Growth and Survival: Therapeutic Impacts of Targeting the HDAC1-IRF4-Pim-2 Axis

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1939-1939 ◽  
Author(s):  
Takeshi Harada ◽  
Asuka Oda ◽  
Yohann Grondin ◽  
Jumpei Teramachi ◽  
Ariunzaya Bat-Erdene ◽  
...  

Abstract Multiple myeloma (MM) is a heterogeneous clonal plasma cell proliferative disorder with CRAB features. Although survival of MM patients has been greatly prolonged by recent implementation of various combinatory treatments with novel anti-MM agents, MM still remains incurable. MM cells preferentially grow and expand in the bone marrow to elicit the alteration of gene expression and thereby drug resistance. To improve the therapeutic efficacy, we urgently need to develop novel treatment strategies targeting the BM microenvironment-mediated drug resistance. The serine/threonine kinase Pim-2 is constitutively over-expressed and acts as a pro-survival mediator in MM cells. We have reported that cocultures with bone marrow stromal cells (BMSCs) or osteoclasts (OCs) further up-regulate Pim-2 expression in MM cells to confer drug resistance (Leukemia 2011, 2015). Therefore, Pim-2 appears to be an important therapeutic target to impair the BM microenvironment-mediated drug resistance in MM. Histone deacetylases (HDACs) are generally accepted to be therapeutic targets for MM treatment. However, clinical application of currently available pan-HDAC inhibitors is limited with their adverse effects induced by a non-selective HDAC inhibition. To develop safe and effective HDAC inhibitor-based treatment, the therapeutic roles of HDAC isoform-specific inhibition should be elucidated. In this regard, we have recently reported therapeutic impacts on MM cells of inhibition of class-I HDACs, especially HDAC1 and HDAC3. HDAC3-selective inhibitor BG45 induces anti-MM activity in combination with DNA methyltransferase (DNMT) inhibitor azacytidine (Leukemia 2017). In the present study, we aimed to clarify the underlying mechanisms for impairment of MM cell growth and survival by HDAC1 inhibition. We first referenced the expression of class-I HDACs using a publicly available GSE6691 data set. Among class-I HDACs, HDAC1 and HDAC3 were highly expressed in MM cells. We then knockdowned HDAC1 gene using lentiviral shRNA system in MM cell lines. The HDAC1 gene silencing induced MM cell death with caspase-3 activation, indicating the critical role of HDAC1 in MM cell growth and survival. To determine target molecules of HDAC1, we carried out RNA-sequencing with and without the HDAC1 gene silencing in RPMI 8226 cells. Among genes whose expression significantly changed by the HDAC1 knockdown (adjusted P values < 0.05, log fold change > 0.5), we focused on IRF4 together with PIM2, because MM cell has been demonstrated to addict to aberrant IRF4-c-Myc regulatory network (Nature 2008). Downregulation of IRF4 and Pim-2 by the HDAC1 knockdown was further confirmed by quantitative PCR (Q-PCR) and immunoblotting in RPMI 8226 and MM.1S cells. Treatment with the class I HDAC-selective inhibitor MS-275 (entinostat) also induced MM cell death along with reduction of IRF4 and Pim-2 expression. Since previous study has shown that IRF4 binds to PIM2 promoter in MM cells (Nature 2008), we examined whether IRF4 regulates PIM2 expression. We found that IRF4 binds to the PIM2 promoter region by analyzing ChIP-Seq data in KMS-12 cells (GSE22901). We further confirmed the binding of IRF4 on PIM2 promoter by ChIP-Q-PCR. Indeed, the IRF4 knockdown downregulated Pim-2 expression in RPMI 8226 cells. These results suggest that HDAC1 inhibition downregulates IRF4 expression, thereby transcriptionally reducing PIM2 expression in MM cells. Pim-2 expression can also be augmented by multiple signaling pathways, including HIF-1a, JAK-STAT and NF-kB-mediated ones in MM cells through the interaction with BM microenvironment. Interestingly, the Pim inhibitor SMI-16a and MS-275 cooperatively induced apoptotic cell death in MM cell lines and CD138-positive primary MM cells even in the presence of BMSCs. Taken together, our results demonstrate the critical role of the HDAC1-IRF4-Pim-2 axis in MM cell growth and survival, and provoke the novel treatment strategy targeting the HDAC1-IRF4-Pim-2 axis in MM cells. Disclosures Anderson: Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership; C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy.

2001 ◽  
Vol 21 (5) ◽  
pp. 1672-1681 ◽  
Author(s):  
Ricky W. Johnstone ◽  
Mark Gerber ◽  
Theresa Landewe ◽  
Anne Tollefson ◽  
William S. Wold ◽  
...  

ABSTRACT The ELL gene encodes an RNA polymerase II transcription factor that frequently undergoes translocation with the MLLgene in acute human myeloid leukemia. Here, we report that ELL can regulate cell proliferation and survival. In order to better understand the physiological role of the ELL protein, we have developed an ELL-inducible cell line. Cells expressing ELL were uniformly inhibited for growth by a loss of the G1 population and an increase in the G2/M population. This decrease in cell growth is followed by the condensation of chromosomal DNA, activation of caspase 3, poly(ADP ribose) polymerase cleavage, and an increase in sub-G1 population, which are all indicators of the process of programmed cell death. In support of the role of ELL in induction of cell death, expression of an ELL antisense RNA or addition of the caspase inhibitor ZVAD-fmk results in a reversal of ELL-mediated death. We have also demonstrated that the C-terminal domain of ELL, which is conserved among the ELL family of proteins that we have cloned (ELL, ELL2, and ELL3), is required for ELL's activity in the regulation of cell growth. These novel results indicate that ELL can regulate cell growth and survival and may explain how ELL translocations result in the development of human malignancies.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3398-3398 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Rory Coffey ◽  
Iris Breitkreutz ◽  
Laurence Catley ◽  
...  

Abstract CD27, a member of tumor necrosis factor receptor superfamily that lacks a death domain in its cytoplasmic region, and its interaction with its ligand, CD70, is crucial for differentiation into plasma cells. In malignant B cells, aberrant expression and reverse signaling of CD70 might contribute to disease progression. Recent studies showed that CD27 is heterogeneously expressed on multiple myeloma (MM) plasma cells and the expression is reduced with the progression of MM. However, a possible role for the loss of CD27-CD70 interaction in myelomagenesis was never defined. In this study, we identify functional significance of CD27-CD70 interaction in 4 CD27-expressing MM lines and define mechanisms regulating CD27-mediated MM cell death. Using RT-PCR and flow cytometric analysis, we first found that all of MM lines highly express CD70 (n=10) and 4 MM lines 12BM, 12PE, 28BM, 28PE express CD27 on the cell surface. We next evaluated the effect of CD27 ligation, by CD70-transfected NIH3T3 cells (CD70 transfectant), on [3H] thymidine incorporation by CD27-expressing MM lines. CD27 ligation by CD70 transfectants inhibited DNA synthesis in these 4 CD27-expressing MM lines, but not the control transfectants. Conversely, a blocking anti-CD70 mAb blocked CD27-mediated growth inhibition in a dose-dependent manner, indicating induced growth inhibition specific triggered by CD27-CD70 interaction. Using MTT assay, CD27 ligation by CD70 transfectant also inhibited MM cell survival. IL-6 (20 ng/ml) could overcome the inhibitory effect triggered by CD27 ligation on MM cell growth and survival. In addition, CD27 ligation further enhanced Dex-induced MM cell death. Importantly, CD27-mediated MM cell death was also observed in 2 CD27-expressing patient MM cells. Since Siva is a death domain-containing proapoptotic protein identified as an intracellular ligand of CD27, we investigated its role in CD27-mediated apoptosis in MM cells. Overexpression of Siva by transducing adenovirus-expressing Siva (Ad-Siva-GFP) in 12BM MM line is sufficient to induce cell death whereas control adenovirus (Ad-GFP) transduction did not alter 12BM cell growth and survival. CD27 ligation by CD70 transfectants on Siva-overexpressing 12BM cells further enhanced Siva-induced apoptosis, as evidenced by increased subG0 fraction in cell cycle analysis. Thus, the apoptosis triggered by Siva overexpression was related to the CD27-mediated apoptotic pathway. We further determined caspase involvement in the Siva-induced apoptosis in the absence and presence of CD70 transfectants. Caspase 8 and caspase 9 activities were detected 24h following Ad-Siva-GFP transduction in 12BM cells, whereas caspas-3 activity was detected 48h after transduction. Coculture of Ad-Siva-GFP-transduced 12BM cells with CD70 transfectant further enhanced caspase activities. Therefore, overexpression of Siva is sufficient to induce apoptosis and CD27-mediated apoptosis is mediated by Siva-dependent caspase activation in MM. Furthermore, these results suggest that lack of CD27 may lead to evasion of apoptosis in human MM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3526-3526
Author(s):  
Xavier Leleu ◽  
Lian Xu ◽  
Zachary R. Hunter ◽  
Sophia Adamia ◽  
Evdoxia Hatjiharissi ◽  
...  

Abstract Background. Several TNF family members (CD40L and BAFF/BLYS) have been implicated in Waldenstrom’s Macroglobulinemia (WM) cell growth and survival. More recently, abnormalities in the APRIL-TACI pathway have been demonstrated by us in WM cells (Hunter, ASH2006, #228). TRAFs (TNFR-associated factor) are a family of adaptor proteins that mediate signal transduction from multiple members of the TNF receptor superfamily. In particular, TRAFs facilitate pro-apoptotic signaling from the TACI receptor, and TRAF2 is of importance among the TRAF adapter proteins since this protein is required for TNF-alpha-mediated activation of SAPK/JNK MAPK known to be involved in drug-induced death of tumor B cells. We therefore examined the role of TRAF2 in WM growth and survival. Method. We investigated TRAF2, 3 and 5 gene expression in WM patient bone marrow (BM) CD19+ cells and cell lines (BCWM.1, WSU-WM) and compared their expression to BM CD19+ cells from healthy donors. Expression of human TRAF transcripts were determined using real time quantitative RT-PCR (qPCR) based on TaqMan fluorescence methodology. To evaluate the role of TRAF2, a knockdown model was prepared in BL2126 B-cells and BCWM.1 WM cells using electroporation, with resulted ≥50% knockdown efficiency using RT-PCR and immunoblotting. Results. We found that TRAF3 and 5 gene expression was higher in WM versus healthy donors, while TRAF2 expression was lower in 8/13 (60%) patients, using qPCR. TRAFs gene expression did not correlate with tumor burden or WM prognostic markers. We next sought to understand the biological sequelae of TRAF2 deficiency in BL2126 and BCWM.1 cells and found that TRAF2 knockdown induced increased survival at 72 hours in both cell lines. We next studied sequence analysis of 20 WM patients CD19+ BM cells to determine whether there was a TRAF2 genomic alteration, and found heterozygous early termination mutation in exon 5 in 1 (5%) patient. Conclusion. Our data demonstrate that TRAF2 is a commonly dysregulated TNF family adapter protein in patients with WM, with important consequences in WM cell growth and survival.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1669-1669
Author(s):  
Hirokazu Miki ◽  
Shuji Ozaki ◽  
Osamu Tanaka ◽  
Shingen Nakamura ◽  
Ayako Nakano ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy characterized by devastating bone destruction due to enhanced bone resorption and suppressed bone formation. Although high-dose chemotherapy and new agents such as thalidomide, lenalidomide, and bortezomib have shown marked anti-MM activity in clinical settings, MM remains incurable due to drug resistance mediated by interactions with osteoclasts or stroma cells. Moreover, osteolytic bone disease continues to be a major problem for many patients. Therefore, alternative approaches are necessary to overcome drug resistance and inhibit osteoclasts activity in MM. KRN5500 is a new derivative of spicamycin produced by Streptomyces alanosinicus (Kirin Pharma, Tokyo, Japan), which potently inhibits protein synthesis and induces cell death in human tumor cell lines. Phase I studies of KRN5500 in patients with solid tumors such as colon cancer and gastric cancer showed acceptable toxicity with Cmax values of 1000––3000 nM. In this study, we investigated the effects of KRN5500 against MM cells and osteoclasts in vitro and in vivo. MM cell lines such as RPMI 8226, MM.1S, INA-6, KMS12-BM, UTMC-2, TSPC-1, and OPC were incubated with various concentrations of KRN5500 for 3 days. Cell proliferation assay showed marked inhibition of cell growth with G1 arrest in these MM cells (IC50: 4–100 nM). KRN5500 (100 nM) also induced 30–90% of cell death in primary MM cells (n=7). Annexin V/propidium iodide staining showed that KRN5500 induced apoptosis of MM cells in a dose- and time-dependent manner. Western blot analysis confirmed activation of caspase-8, -9, and −3, cleavage of poly (ADP-ribose) polymerase (PARP), and down-regulation of Mcl-1. We next examined the effect of KRN5500 against MM cell lines and primary MM cells in the presence of bone marrow stroma cells and osteoclasts. Co-culture of these cells enhanced viability of MM cells; however, KRN5500 still induced strong cytotoxicity to MM cells. Of interest, KRN5500 specifically mediated apoptosis in osteoclasts but not stroma cells as assessed by TUNEL staining. More than 90% of osteoclasts were killed even at a low concentration of KRN5500 (20 nM). Finally, we evaluated the effect of KRN5500 against MM cells and osteoclasts in vivo. Two xenograft models were established in SCID mice by either subcutaneous injection of RPMI 8226 cells or intra-bone injection of INA-6 cells into subcutaneously implanted rabbit bones (SCID-rab model). These mice were treated with intraperitoneal injection of KRN5500 (5 mg/kg/dose) or saline thrice a week for 3 weeks after tumor development. In a subcutaneous tumor model, KRN5500 inhibited the tumor growth compared with control mice (increased tumor size, 232 ± 54% vs 950 ± 422%, p&lt;0.001, n=6 per group). In a SCID-rab model, KRN5500 also inhibited MM cell growth in the bone marrow (increase of serum human sIL6-R derived from INA-6, 134 ± 19% vs 1112 ± 101%, p&lt;0.001, n=5 per group). Notably, the destruction of the rabbit bones was also prevented in the KRN5500-treated mice as evaluated by radiography. Therefore, these results suggest that KRN5500 exerts anti-MM effects through impairing both MM cells and osteoclasts and that this unique mechanism of action provides a valuable therapeutic option to improve the prognosis in patients with MM.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2603
Author(s):  
Humberto De Vitto ◽  
Danushka B. Arachchige ◽  
Brian C. Richardson ◽  
Jarrod B. French

Nucleotides are essential to cell growth and survival, providing cells with building blocks for DNA and RNA, energy carriers, and cofactors. Mitochondria have a critical role in the production of intracellular ATP and participate in the generation of intermediates necessary for biosynthesis of macromolecules such as purines and pyrimidines. In this review, we highlight the role of purine and mitochondrial metabolism in cancer and how their intersection influences cancer progression, especially in ovarian cancer. Additionally, we address the importance of metabolic rewiring in cancer and how the evolving landscape of purine synthesis and mitochondria inhibitors can be potentially exploited for cancer treatment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3434-3434
Author(s):  
Rao H. Prabhala ◽  
Teru Hideshima ◽  
Mariateresa Fulciniti ◽  
Sophia Adamia ◽  
Rajya Lakshmi Bandi ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy, however, significant abnormalities in T cell function are considered to provide help in uncontrolled growth and survival of MM cells. We have previously reported that IL-17A-producing Th17 cells are elevated in MM, that MM cells express IL-17 receptor, and IL-17A promotes MM cell growth and survival. We have reported that MM cells themselves produce IL-17A as confirmed by RT-PCR, Western blotting and immunostaining providing a possibility of both autocrine and paracrine role for IL-17A in MM. As Notch activation has been implicated in Th17 cell differentiation and IL17A production, we have here investigated the role of Notch pathway activation in IL-17A-mediated MM cell growth within the BM microenvironment. Notch consists of 4 proteins (1-4) and has 5 ligands (DLL-1,3,4 and jagged-1, 2). We analyzed RNA-Seq data from 117 newly-diagnosed MM patients and 18 normal plasma cells and observed high expression of Notch 1, and 2 and Notch target genes Hes-1 and Hey-1 but not Notch 3 and 4 in MM. For Notch 2, isoform 2 was highly predominant. Notch expression on MM cells was further confirmed by flow cytometric analysis (Notch1-84%, Notch2-86% and Notch3-3%). Evaluating functional role of Notch in MM, when MM cells were co-cultured with Notch ligand jagged 2-expressing 3T3 cells, IL-17A was able to further induce Notch target gene Hes-1 by 45%. Interestingly, increase in the expression of Notch 2 was also observed during this interaction (increased full-length protein by 65% and active intra-cellular protein by 145%). We next evaluated effect of both anti-IL-17 antibody and Notch inhibitors on MM cells. Anti-IL-17A monoclonal antibody inhibited full-length Notch2 protein expression by 54% and active intra-cellular protein by 85%, as determined by western blot analysis. The antibody inhibitory activity was confirmed with quantitative PCR. Importantly, IL-17A mAb inhibited Hes-1 protein expression by 83%. With the observed impact of Notch signaling in MM, we next evaluated notch inhibitors MRK003, and compound E, a γ-secretase inhibitors, to determine their impact on MM cell growth and survival. We observe that Notch inhibitors affect MM cell growth (inhibition by 43%%, N=5) and IL-6 production (inhibition by 60%, N=3) in co-culture with bone marrow stromal cells. These preclinical data establish the role of IL-17 as well as Notch signaling in myeloma and provides the rationale to evaluate anti-MM activity of anti-IL-17A monoclonal antibody and Notch inhibitors in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 726-726 ◽  
Author(s):  
Mariateresa Fulciniti ◽  
Mehmet Kemal Samur ◽  
Naim Ur Rashid ◽  
Rajya Lakshmi Bandi ◽  
Manoj Bhasin ◽  
...  

Abstract Transcriptome modifiers such as alternative pre-mRNA splicing (AS), long non-coding RNA and microRNA (miRNA) need to be considered in order to provide a more accurate genomic framework for clinical correlation, as well as for high value therapeutic target discovery. Aberrant splicing of numerous genes has been reported in other malignancies, including a small number of genes reported in MM. We have evaluated AS in MM by analyzing clinically annotated high throughput RNA-seq data from 410 newly-diagnosed patients and 18 normal donor plasma cells. We observed a profound and significant AS in MM with over 600 genes showing significant changes in relative isoform abundances (isoform switching) between MM and normal samples. Importantly, unsupervised analysis identified clinically relevant MM subgroups with high and low splicing index respectively and showed significant impact of alternate splicing on overall clinical outcome. Based on these data, we next focused on understanding the molecular mechanisms driving aberrant alternate splicing in myeloma. Several studies provide evidence that an abnormally expressed splicing factor (SF) can have oncogenic properties by impacting alternative splicing of cancer-associated genes. We detected dysregulated expression of several SFs, including SF3B1, Fox2, SRSF1, NONO, in patients with MM compared to normal plasma cells with impact on outcome, highlighting for the first time the prognostic significance of splicing related factors in myeloma. We further observed that overexpression of some of these SFs increased cell proliferation, enhanced anchorage independent growth in semi-solid medium, and affected tumorigenic potential. We have further investigated role of Serine/Arginine Splicing Factor 1 (SRSF1) in MM by gain of- and loss of- function studies. Enforced expression of SRSF1 in MM cells significantly increased proliferation, especially in the presence of bone marrow stromal cells. Conversely, transient or stable downregulation of SRSF1 with specific siRNA and shRNAs respectively, significantly inhibited MM cell proliferation and cell survival. We have also investigated a small molecular inhibitor of SRSF1 (TG003) and observed inhibition of MM cell growth and survival. The impact of this inhibitor on allelic isoforms of specific gene targets is undergoing. To dissect the mechanisms involved in the SRSF1-mediated MM growth induction, we used SRSF1 mutants lacking either of the two RNA-recognition motifs (ΔRRM1 or ΔRRM2 mutants) or the serine/argine-rich C-terminal domain (ΔRS mutant) involved in protein-protein interactions, subcellular localization, and recruitment of spliceosome components. We also used a C-terminal fusion of SRSF1 with the nuclear-retention signal of SRSF2 (NRS1 mutant), to force SRSF1 retention in the nucleus and assess the role of its nuclear versus cytoplasmic functions. We surprisingly found that only NRS1 mutant failed to promote MM growth, suggesting an important role of cytoplasmic SRSF1 in promoting MM cells proliferation. Finally, using genome wide chromatin and transcription landscape mapping techniques, we have found SRSF1 to be under the transcriptional control of E2F1, a transcription factor with significant impact on MM cell growth and survival. A significant reduction in SRSF1 at mRNA and protein levels was observed after E2F1 and/or E2F1 heterodimerization partner Dp1 gene silencing. Moreover, peptide-based strategy to abrogate interaction between Dp1-E2F1 led to decreased SRSF1 expression levels. These results indicate a functional role and clinical significance of a gene involved in regulation of alternate splicing in MM. The study highlights the need to further understand the splicing pattern in myeloma and also supports the emerging concept that splicing programs, together with transcriptional programs participate in the altered cellular function during tumor initiation and progression. Disclosures Munshi: onyx: Membership on an entity's Board of Directors or advisory committees; celgene: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees; novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document