The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma

Blood ◽  
2021 ◽  
Author(s):  
Baptiste Eluard ◽  
Stéphanie Nuan-Aliman ◽  
Nathalie Faumont ◽  
Davi Collares ◽  
Didier Bordereaux ◽  
...  

Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. NF-kB transcription factor family is activated by two main pathways, the canonical and the alternative NF-kB activation pathways with different functions. The alternative NF-kB pathway leads to the activation of the transcriptionally active RelB NF-kB subunit. Alternative NF-kB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their ABC or GCB subtypes. RelB activity defines a new subset of DLBCL patients with a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for ABC tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-kB, thus indicating that current genetic tools to evaluate NF-kB activity in DLBCL do not provide information on the alternative NF-kB activation. Further, the newly defined RelB-positive subgroup of DLBCL patients exhibits a dismal outcome following immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA-damage induced apoptosis in response to doxorubicin, a genotoxic agent used in front-line treatment for DLBCL. We also show that RelB positivity is associated with high expression of cIAP2. Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of DLBCL patients.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yi Zhao ◽  
Juan Yang ◽  
Jiarui Liu ◽  
Yiqing Cai ◽  
Yang Han ◽  
...  

AbstractPolo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, has recently been shown to play key roles in tumorigenesis. Blocking PLK4 expression by interference or targeted drugs exhibits attractive potential in improving the efficacy of chemotherapy. Nevertheless, the role of PLK4 in diffuse large B-cell lymphoma (DLBCL) is still undefined. In this study, we discover that PLK4 is a potential target for the treatment of DLBCL, and demonstrate the efficacy of a PLK4 inhibitor when used in combination with doxorubicin. Pharmaceutical inhibition of PLK4 with CFI-400945 inhibited DLBCL cell proliferation and induced apoptotic cell death. The anti-tumor effects were accompanied by mitotic defects, including polyploidy and cytokinesis failure. Activation of p53 and Hippo/YAP tumor suppressor signaling pathway was identified as the potential mechanisms driving CFI-400945 activity. Moreover, CFI-400945 treatment resulted in activation of DNA damage response. Combining CFI-400945 with doxorubicin markedly delayed tumor progression in DLBCL xenografts. Finally, PLK4 was increased in primary DLBCL tissues and cell lines. High levels of PLK4 expression were associated with poor survival in the patients receiving CHOP-based treatment, implicating PLK4 as a predictive biomarker of DLBCL chemosensitivity. These results provide the therapeutic potential of CFI-400945 both as monotherapy or in combination with doxorubicin for the treatment of DLBCL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3073-3073
Author(s):  
Naoki Kaneko ◽  
Keisuke Mitsuoka ◽  
Nobuaki Amino ◽  
Kentaro Yamanaka ◽  
Aya Kita ◽  
...  

Abstract Background Diffuse large B-cell lymphoma (DLBCL) responds well to treatment with rituximab (RTX, an anti-CD20 antibody) based regimen, but a subset of patients still fail to achieve complete or durable responses and are not eligible for high-dose chemotherapy followed by autologous stem cell transplant. Therefore novel effective therapies with less toxicity for relapsed or refractory DLBCL patients are needed. Bendamustine (BEN) is a bifunctional alkylating agent for the treatment of multiple hematological tumors, including indolent and RTX-resistant NHL, and the combination of BEN with RTX showed clinical activity in patients with relapsed or refractory DLBCL in the Phase II study 1. Sepantronium bromide (YM155), a survivin suppressant, shows potent antitumor activities against a wide range of cancer cells, and NHL including DLBCL is one of the most sensitive tumor types to YM155. YM155 showed clinical activity when combined with RTX in patients with relapsed DLBCL 2. In the present study, we evaluated therapeutic potential of YM155, in combination with BEN or BEN and RTX using DLBCL models. Results The combination of YM155 with BEN decreased cell viability to a greater extent than either single agent alone in DB, SU-DHL-8, and WSU-DLCL2 human DLBCL cell lines. Bliss additivism analysis revealed that the combined effects were synergistic. In addition The combination of YM155 with BEN induced a greater sub-G1 population, indicative of apoptosis, than either agent alone. The percentages of sub-G1 population induced by YM155, bendamustine, and combination of both were 5.9%, 6.5%, and 27% in DB cells; 19%, 32%, and 58% in SU-DHL-8 cells; and 46%, 30%, and 71% in WSU-DLCL2 cells, respectively. BEN induced γ-histone 2AX (γ-H2AX), a marker of DNA damage and phosphorylation of ATM substrates including p53, and check point kinase-2 (Chk2) which leads to phosphorylation of cdc2. Further BEN induced G2/M arrest associated with the increase of survivin. The combination of YM155 with BEN inhibited phosphorylation of p53, chk2, and cdc2 and accumulation of survivin at G2/M phase, and induced greater DNA damage and cleaved PARP than either single agent alone. In human DLBCL DB xenografts, 7-day continuous s.c. infusion of YM155 at 1 mg/kg/day enhanced antitumor activity of BEN at 50 mg/kg (i.v.) and induced complete regressions in 6 out of 8 mice without affecting body weight. Further, in an activated B-cell-like (ABC)-DLBCL disseminated xenograft model, the combination of YM155 with BEN and RTX significantly prolonged survival associated with the decrease in the FLT-PET signals in lymph node compare with either the combination of BEN with RTX and YM155 with RTX. Conclusions Our data indicates that YM155 enhances the antitumor activity of BEN against DLBCL models through inhibition of DNA damage responses as well as survivin accumulation at the G2/M phase. Further, triple combination of YM155 with BEN and RTX showed survival benefit in comparison with either BEN-RTX combination or YM155-RTX combination, supporting the further clinical investigation of this triple combination for the treatment of relapsed or refractory DLBCL. Reference: 1. Ohmachi et al. J Clin Oncol. 2013 Jun 10;31(17):2103-9 2. Papadopoulos et al. American Society of Hematology Annual meeting Abstract No. 2731. 2012. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 56 (10) ◽  
pp. 2190-2199 ◽  
Author(s):  
Wenjun Wu ◽  
Yang Yang ◽  
Gang Deng ◽  
Liang Ma ◽  
Guoqing Wei ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4178-4186 ◽  
Author(s):  
Shahab Uddin ◽  
Azhar R. Hussain ◽  
Abdul K. Siraj ◽  
Pulicat S. Manogaran ◽  
Naif A. Al-Jomah ◽  
...  

Abstract Phosphatidylinositol 3′-kinase (PI3K) is a key player in cell-growth signaling in a number of lymphoid malignancies, but its role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated. Therefore, we investigated the role of the PI3K/AKT pathway in a panel of 5 DLBCL cell lines and 100 clinical samples. Inhibition of PI3K by a specific inhibitor, LY294002, induced apoptosis in SUDHL4, SUDHL5, and SUDHL10 (LY-sensitive) cells, whereas SUDHL8 and OCI-LY19 (LY-resistant) cells were refractory to LY294002-induced apoptosis. AKT was phosphorylated in 5 of 5 DLBCL cell lines and inhibition of PI3K caused dephosphorylation/inactivation of constitutively active AKT, FOXO transcription factor, and GSK3 in LY-sensitive cell lines. In addition, there was a decrease in the expression level of inhibitory apoptotic protein, XIAP, in the DLBCL cell lines sensitive to LY294002 after treatment. However, no effect was observed in XIAP protein levels in the resistant DLBCL cell lines following LY294002 treatment. Finally, using immunohistochemistry, p-AKT was detected in 52% of DLBCL tumors tested. Furthermore, in univariate analysis, high p-AKT expression was associated with short survival. In multivariate analysis, this correlation was no longer significant. Altogether, these results suggest that the PI3K/AKT pathway may be a potential target for therapeutic intervention in DLBCL.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27213 ◽  
Author(s):  
Cynthia Bellanger ◽  
Lydie Dubanet ◽  
Marie-Claude Lise ◽  
Anne-Laure Fauchais ◽  
Dominique Bordessoule ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2732-2732
Author(s):  
Enrico Derenzini ◽  
Ilaria Iacobucci ◽  
Elisa Brighenti ◽  
Federica Cattina ◽  
Richard Eric Davis ◽  
...  

Abstract Abstract 2732 The checkpoint kinases 1 (CHK1) and 2 (CHK2) are serine-threonine kinases involved in the signal transduction mechanims of the DNA damage response pathway. Once activated by upstream kinases [Ataxia-Telangiectasia mutated (ATM) and Ataxia-Telangiectasia and Rad3-related (ATR) kinases] following DNA damage, they phosphorylate downstream targets such as CDC25 phosphatases and p53, promoting G2/M cell cycle arrest, in order to facilitate DNA repair. Furthermore is now clear that the efficacy of conventional DNA-damaging anticancer drugs is limited by the activity of these protective cell cycle checkpoints. The tumor suppressor p53 is activated in normal cells following extensive DNA damage and promotes G1 cell cycle arrest and apoptosis. Cells lacking p53 activity are more resistant to genotoxic agents. It has been shown that CHK inhibition enhances the efficacy of DNA damaging agents in a variety of tumors, by inhibiting the response to DNA damage, preferentially in p53 deficient cells, that rely on the G2/M checkpoint, having a dysfunctional G1 checkpoint. DLBCL harboring p53 mutations and/or CDKN2A loss have been recently shown to have a dismal outcome, being refractory to conventional antracyclin-based chemotherapy. Few data are available on the role of CHK inhibitors in Diffuse Large B cell Lymphoma (DLBCL). In this study we report the activity profile of the CHK1/2 inhibitor PF-0477736 (Pfizer) in a large panel of B cell lymphoma cell lines, and explore its mechanisms of action. Nine cell lines were used for in vitro viability assays: 3 Germinal center (GCB) Diffuse Large B-cell lymphoma (DLBCL) derived cell lines (SUDHL-4, SHDHL-6, BJAB), 3 Activated B cell (ABC) DLBCL (HBL-1, U2932, TMD8), 2 mantle cell lymphoma (Mino, SP-53), and the Hodgkin Lymphoma cell line KM-H2. All the cell lines were screened for p53 and CDKN2A mutations and deletions. P53 mutations were detected in the following cell lines: HBL-1, U2932, SUDHL-6, BJAB, Mino, SP-53. TMD8 was p53 wild-type but an homozygous deletion of CDKN2A was detected. Of note SUDHL-4 and KM-H2 were p53 wild type, with no deletion of CDKN2A. To assess the effect of PF-0477736 on cell proliferation, cells were first incubated with increasing concentrations of PF-0477736 (from 5 to 2000 nM) for 24, 48 and 72 hours (hrs), and cell viability assessed by WST-1 assay (Roche). A significant growth inhibition was evident after 48 hrs of incubation, in all cell lines, excluding SUDHL-4 and KM-H2 that were resistant (IC50 8300 and 6800 nM at 48 hrs, respectively). The BJAB cell line showed the highest sensitivity, with a decrease in cell viability close to 50% following incubation with PF-0477736 10nM for 24 hours. The IC50 ranged from 140 to 230 nM at 48 hrs in the other sensitive cell lines. Using Annexin V- propidium iodide staining, we found that PF-0477736 250–500 nM induced cell death by apoptosis in a time and dose dependent manner after 24 and 48 hours of incubation. Lower concentrations of PF-0477736 (25–50 nM) promoted a statistically significant increase in cell death only in the BJAB cells. For functional studies we characterized the two most sensitive cell lines (BJAB and U2932) and the two resistant cell lines (SUDHL-4 and KM-H2). Inhibition of cdc25c ser216 phosphorylation was observed by western blot as soon as after 24 hrs of incubation with concentrations equal to the IC50 (25–250 nM). A marked increase in levels of the DNA damage marker γH2AX, was detected in the BJAB, U2932, SUDHL-4 cell lines after 24 hrs. KM-H2 did not show any increase of γH2AX following treatment. All the cell lines demonstrated baseline CHK1 activation but there was no correlation with outcome. Interestingly levels of baseline pcdc25c ser216 were higher in the sensitive BJAB and U2932 cells. PF-0477736 at the fixed dose of 50 nM synergistically enhanced the efficacy of Doxorubicin (0.1 to 1 μM) in the BJAB and U2932 cells at 24 hrs. These data suggest that PF-0477736 has single agent activity and synergizes with chemotherapy in DLBCL. The integrity of the p53 axis seems to be the major determinant of efficacy of PF-0477736. The drug shows high single agent activity in the subset of DLBCL with genomic lesions of the p53 pathway, that are resistant to conventional chemotherapy and associated with dismal outcome. Our study provides the rationale for further clinical investigation of PF-0477736 in DLBCL alone or in combination with chemotherapy. PF-0477736 was provided by Pfizer. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4900-4900
Author(s):  
Eloisi Caldas Lopes ◽  
Fabian M Correa ◽  
Ling-Bo Shen ◽  
Jae-Hung Shieh ◽  
Tony Taldone ◽  
...  

Abstract Abstract 4900 Background: Multiple studies have demonstrated that the bone marrow stromal microenvironment contributes to the survival of hematologic malignant cells, eventually leading to relapse. However, molecular mechanisms associated with this stromal niche remain unclear. The human bone marrow stromal cell lines, HS-5 and HS-27, provide physical contact with hematologic cells, while HS-5 cells secrete more growth factors and cytokines than HS-27 stromal cells. Our objective is to dissect the mechanisms underlying stromal-mediated drug tolerance in leukemia and lymphoma cells, which could potentially lead to novel therapies for various leukemia. Methods and Results: A panel of leukemia and B-cell lymphoma cell lines were used in this project, including Kasumi1 (AML: Acute Myeloid Leukemia) and OCILy1 (DLBCL: Diffuse Large B-Cell Lymphoma) cells and their respective sub-lines resistant to heat shock protein-70 and −90 (HSP70/90) inhibitors. To determine the ability of stromal cell lines to confer tolerance to HSP-inhibitors, Kasumi1 and OCILy1 (sensitive and resistant) cells were cultured alone or in the presence of the HS-27 or HS-5 cells with HSP70 inhibitor or HSP90 inhibitor for 48h. The resulting cultures were then harvested and analyzed for apoptosis and by western blot. Both HS-5 and HS-27 stromal cells markedly protected OCILy1 and Kasumi1 cells from HSP70 inhibitor induced apoptosis. At a dose of 0.5 μM, % apoptotic cells were 74.0±1.6% for OCILy1 alone, 38.3±2.1% for OCILy1 with HS-5 and 42.2±1.8% for OCILY1 with HS-27. At a dose of 1 μM of HSP90 inhibitor, apoptosis rate are 61.9±1.5% for OCILy1 alone, 28.2±2.2% for OCILy1 with HS-5 and 36.4±1.9% for OCILy1 with HS-27. A similar HSP inhibitor induced apoptosis was also observed in Kasumi1 cells. In contrast, both Kasumi1 and OCILy1 HSP70/90 inhibitor resistant sub-lines in the presence or absence of the stromal cells did not respond to treatment with respective inhibitors. Further study reveals the stromal cells up-modulated the expression of the anti-apoptotic proteins Bcl2 and Bcl-xL in both Kasumi and OCILY1 cells. Conclusions: Our results demonstrate that the stromal niche is able to mediate tolerance to HSP70 and HSP90 inhibitors in Leukemia and B-cell lymphoma via up-regulation of antiapoptotic proteins such as Bcl2 and Bcl-xL. The Bcl2 protein is deregulated and plays a crucial role in diffuse large B-cell lymphoma (DLBCL) with the t(14;18) translocation. Our finding elucidates one of the drug-specific mechanisms that suggest a promising combination therapy targeting both HSP70 and HSP90 to reduce antineoplastic resistance and relapse, and thereby improve survival for patients with leukemia and lymphoma. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document