scholarly journals SARS-CoV-2 infection induces the activation of tissue factor-mediated coagulation by activation of acid sphingomyelinase

Blood ◽  
2021 ◽  
Author(s):  
Jue Wang ◽  
Usha R. Pendurthi ◽  
Guohua Yi ◽  
L. Vijaya Mohan Rao

SARS-CoV-2 infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARs-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles (EVs). The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacological inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the FDA-approved functional inhibitors of ASMase may help treat hypercoagulability in COVID-19 patients.

Blood ◽  
2019 ◽  
Vol 134 (7) ◽  
pp. 645-655
Author(s):  
Jue Wang ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Tissue factor (TF) is a cofactor for factor VIIa and the primary cellular initiator of coagulation. Typically, most TF on cell surfaces exists in a cryptic coagulant-inactive state but are transformed to a procoagulant form (decryption) following cell activation. Our recent studies in cell model systems showed that sphingomyelin (SM) in the outer leaflet of the plasma membrane is responsible for maintaining TF in an encrypted state in resting cells, and the hydrolysis of SM leads to decryption of TF. The present study was carried out to investigate the relevance of this novel mechanism in the regulation of TF procoagulant activity in pathophysiology. As observed in cell systems, administration of adenosine triphosphate (ATP) to mice enhanced lipopolysaccharide (LPS)-induced TF procoagulant activity in monocytes. Treatment of mice with pharmacological inhibitors of acid sphingomyelinase (ASMase), desipramine and imipramine, attenuated ATP-induced TF decryption. Interestingly, ASMase inhibitors also blocked LPS-induced TF procoagulant activity without affecting the LPS-induced de novo synthesis of TF protein. Additional studies showed that LPS induced translocation of ASMase to the outer leaflet of the plasma membrane and reduced SM levels in monocytes. Studies using human monocyte-derived macrophages and endothelial cells further confirmed the role of ASMase in LPS- and cytokine-induced TF procoagulant activity. Overall, our data indicate that LPS- or cytokine-induced TF procoagulant activity requires the decryption of newly synthesized TF protein by ASMase-mediated hydrolysis of SM. The observation that ASMase inhibitors attenuate TF-induced coagulation raises the possibility of their therapeutic use in treating thrombotic disorders associated with aberrant expression of TF.


2021 ◽  
Vol 27 ◽  
pp. 107602962110039
Author(s):  
Carlos A. Cañas ◽  
Felipe Cañas ◽  
Mario Bautista-Vargas ◽  
Fabio Bonilla-Abadía

COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of antiphospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in addition to its anti-inflammatory effect, through inhibition of TF.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2510-2519 ◽  
Author(s):  
JE Fox ◽  
CC Reynolds ◽  
CD Austin

Abstract Although calpain (the Ca2(+)-dependent protease) is widely distributed, its function is poorly understood. One cell in which it becomes activated as a consequence of activation of the cell is the blood platelet. The aim of the present study was to determine whether activation of calpain was responsible for any of the responses of platelets to stimulation. Platelets were incubated with calpeptin, a membrane-penetrating inhibitor of calpain, before being exposed to an agonist. Concentrations of calpeptin that totally inhibited the agonist- induced hydrolysis of actin-binding protein (ABP) by calpain had no effect on many other responses associated with platelet activation: phosphorylation of myosin light chain, phosphorylation of P47, platelet shape change, aggregation of platelets, secretion of granule contents, or retraction of fibrin clots. However, these concentrations of inhibitor decreased the agonist-induced generation of procoagulant activity (assayed as the ability of platelets to catalyze the conversion of prothrombin to thrombin in the presence of factor Va and factor Xa). When thrombin was the agonist, the amount of ABP that was hydrolyzed was small; only a small component of the total agonist- induced procoagulant activity was inhibited by calpeptin. When collagen was the agonist, more ABP was hydrolyzed and the amount of procoagulant activity generated was greater; calpeptin decreased the collagen- induced procoagulant activity to levels comparable with those induced by thrombin in the presence of the inhibitor. We suggest that there are at least two mechanisms by which procoagulant activity is generated on activated platelets and that the agonist-induced activation of calpain mediates one of these mechanisms. These results show that activation of calpain is a component of the stimulus-response pathway in platelets.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3038-3044 ◽  
Author(s):  
Dennis J. Dietzen ◽  
Keith L. Page ◽  
Tina A. Tetzloff

Abstract A fraction of total cellular tissue factor procoagulant activity remains masked or “encrypted” in intact cells. Decryption of this activity partly involves the extracellular exposure of anionic phospholipids such as phosphatidylserine. Because of the potential association of tissue factor and phospholipid scramblase activity with lipid rafts, we have explored the role of lipid rafts in regulating factor VIIa/tissue factor activity. In HEK293 cells, tissue factor antigen was not stably associated with lipid rafts, yet disruption of rafts with methyl-β-cyclodextrin resulted in a 3-fold stimulation of tissue factor procoagulant activity. Treatment with methyl-β-cyclodextrin was not associated with cytotoxicity and did not result in the exposure of additional tissue factor antigen. Factor VIIa/tissue factor activity decrypted with methyl-β-cyclodextrin was quantitatively similar to that obtained by using lytic concentrations of octyl glucoside but more sensitive to inhibition by cell surface tissue factor pathway inhibitor and the phospholipid binding protein, annexin V. Partial decryption of tissue factor was achieved with methyl-β-cyclodextrin prior to complete disruption of lipid rafts, suggesting the role of an enzyme localized to lipid rafts in the transbilayer transport of phosphatidylserine. We conclude that lipid rafts are required for the maintenance of cellular tissue factor in an encrypted state. (Blood. 2004;103:3038-3044)


2008 ◽  
Vol 15 (4) ◽  
pp. 269-282 ◽  
Author(s):  
Marijke J.E. Kuijpers ◽  
Imke C.A. Munnix ◽  
Judith M.E.M. Cosemans ◽  
Bart J. Van Vlijmen ◽  
Chris P.M. Reutelingsperger ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1505-1505
Author(s):  
Kothari Hema ◽  
Shiva Keshava ◽  
Rit Vatsyayan ◽  
Nigel Mackman ◽  
Usha R Pendurthi ◽  
...  

Abstract Tuberculosis, a chronic lung infection caused by Mycobacterium tuberculosis (M.tb), affects nearly one third of the world’s population. Clinical manifestations of TB include hypercoagulable states and thrombotic complications particularly disseminated intravascular coagulation and deep vein thrombosis. Tissue factor (TF) plays an important role in the initiation of inflammation-induced coagulation. Various bacterial infections induce aberrant expression of TF on vascular cells, which contributes to intravascular coagulation and exacerbation of inflammation. Studies have shown that either a genetic deficiency of TF or blockade of TF functional activity reduces coagulopathy, proinflammatory cytokine release and infection-associated mortality. In contrast, TF-dependent coagulation activation and fibrin deposition may be protective in host-defense against certain bacterial infections via reducing pathogen burden and limiting their dissemination. In vitro M.tb infection markedly upregulates TF expression and increases procoagulant activity of macrophages. However, it is not yet known whether TF expression has any functional significance in TB pathogenesis. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth and containment of infection. Wild-type C57BL6 (WT) and transgenic mice that express either very low levels of human TF (low TF, ~1% of WT) or high levels of human TF (HTF, ~100% of WT) in place of murine TF were infected with aerosol exposure of M.tb H37Rv. Mice were sacrificed 2 and 8 weeks post-infection. An evaluation of in vivo TF expression, coagulation activation, proinflammatory cytokines and tissue bacterial burden was performed. M.tb infection did not significantly alter overall TF expression and procoagulant activity in lungs of WT and HTF mice. Although not statistically significant, M.tb infection increased TF activity substantially in the lung homogenates in low TF mice. Nonetheless, TF expression levels in lungs of low TF mice, both uninfected and M.tb.-infected, was negligible as compared to WT and HTF mice. M.tb infection markedly increased TF expression in localized areas within the granulomas of WT and HTF mice. Interestingly, these intensely stained TF positive patches were also present in the granulomas of low TF mice after M.tb infection. The increased localized expression of TF in low TF mice may be responsible for the increased TF activity in the lung homogenates in low TF mice. M.tb infection was not accompanied by systemic and pulmonary activation of coagulation in WT and HTF mice. There was no change in the plasma thrombin-anti-thrombin complexes (TATc) upon M.tb infection in all three genotypes. Although, the bronchoalveolar lavage (BAL) TATc significantly increased (10-fold) after M.tb infection in the low TF mice, still the level was 15-50 folds lower than those in HTF and WT mice. The levels of TNF-α, IFN-γ, IL-6 and IL1-β increased upon M.tb infection but no significant differences in the cytokine profiles of BAL and total lung homogenates were observed among the genotypes. Higher expression of TF in the granuloma of WT and HTF correlated with the presence of small discrete regions of fibrin islands especially extending toward outer margin of the granuloma whereas little fibrin staining was seen in the granuloma of low TF mice. Despite, marked differences in fibrin generation in the granuloma, there were no significant differences in either lung bacterial burden or dissemination to liver and spleen. In summary, our data suggest that TF-mediated coagulation and/or signaling does not appear to contribute to host defense during experimental tuberculosis. However, it is difficult to completely eliminate a role for TF in M.tb. pathogenesis since M.tb. induced significant amount of TF expression in localized areas in the granuloma even in low TF mice. It is possible that this small amount of TF expressed within the granuloma may be sufficient to mediate local coagulant and signaling functions to facilitate M.tb. growth and dissemination. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 1 (13) ◽  
pp. 849-862 ◽  
Author(s):  
Jue Wang ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Key PointsSM in the outer leaflet of the plasma membrane is responsible for TF encryption. ATP-induced activation of A-SMase leads to hydrolysis of SM in the outer leaflet, which consequently activates TF and releases TF+ MVs.


2021 ◽  
Vol 7 ◽  
Author(s):  
Ha-Yeun Chung ◽  
Ralf A. Claus

Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 16-16
Author(s):  
Jue Wang ◽  
Usha R Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract While tissue factor (TF)-mediated blood coagulation is essential for maintaining hemostasis, the aberrant activation of TF-mediated coagulation is a major determinant of thrombotic occlusions, the precipitating event in acute myocardial infarction, unstable angina, and ischemic stroke. Typically, TF on cell surfaces exists in inactive coagulant status (cryptic TF). Cell injury leads conversion of cryptic TF to coagulant active/prothrombotic TF. Molecular differences between cryptic and procoagulant TF and the mechanisms that are responsible for the conversion from one to the other form are poorly understood and often controversial. A majority of the evidence in the literature suggest that level of anionic phospholipids, such as phosphatidylserine (PS), in the outer leaflet of the plasma membrane plays a critical role in regulating TF procoagulant activity at the cell surface. However, other pathways, such as the thioredoxin system or thiol-disulfide exchange pathways involving protein-disulfide isomerase (PDI), were also shown to contribute to TF activation by inducing structural changes in TF. It is unknown at present whether TF on cell surfaces of naïve cells exists primarily in the cryptic state because of the limited availability of anionic phospholipids at the outer leaflet or phospholipids present in the outer leaflet play an active role in maintaining TF in the cryptic state. In the outer leaflet of mammalian plasma membrane, sphingomyelin (SM) constitutes up to 50% of the total phospholipids present on the cell surface. It is possible that a high SM content in the outer leaflet may be responsible for maintaining TF in its cryptic state at the cell surface in naïve cells, and the hydrolysis of SM on the outer leaflet mediated by factors released in cell injury contributes to TF activation. The present study was carried out to investigate this possibility. First, we tested the potential effect of SM on TF activity in a reconstituted system in which full-length TF was reconstituted into phospholipid vesicles composed of varying molar concentrations of SM with the remainder of the vesicle consisting of phosphatidylcholine (PC). SM, at 35 mol % or higher concentration in the proteoliposome, inhibited TF coagulant activity significantly as measured in factor X activation assay. Ceramide, having a similar sphingosine backbone as of SM, had no inhibitory effect on TF-FVIIa activation of FX. Measurement of FVIIa-TF amidolytic activity showed that SM does not inhibit the amidolytic activity of FVIIa-TF, indicating that SM neither affects FVIIa binding to TF nor TF-FVIIa cleavage of the small substrate peptide. SM also inhibited significantly TF activity of TF reconstituted in PC/PS (94%:6% mol/mol) vesicles. Next, human monocyte-derived macrophages (MDMs) were treated with varying concentrations of bacterial sphingomyelinase (b-SMase) to hydrolyze SM in the outer leaflet. b-SMase treatment increased cell surface TF activity in a dose-dependent manner. SMase treatment also enhanced the release of TF-bearing microparticles (MPs). SMase treatment had no significant effect on cell surface prothrombinase activity or annexin V binding to MDMs, indicating that b-SMase treatment did not increase PS availability at the cell surface under our experimental conditions. Similar to that observed in bone marrow-derived mouse macrophages, ATP (200 µM) stimulation of MDMs increased cell surface TF activity by about 3-fold and triggered the release of TF+ MPs. Immunofluorescence confocal microscopy revealed that ATP stimulation induced in the translocation of acid(a)-SMase from intracellular compartments to the outer leaflet of the plasma membrane. Treatment of MDMs with sphingomyelinase inhibitors, desipramine and imipramine (1 and 5 µM), or silencing a-SMase with siRNA markedly reduced the ATP-induced increased TF activity at the cell surface and TF+ MPs release. Finally, ATP stimulation was shown to increase the hydrolysis of SM in the outer leaflet of MDMs markedly. a-SMase inhibitors or silencing of a-SMase attenuated the ATP-induced SM hydrolysis. In summary, our data indicate that SM plays a critical role in maintaining TF in the cryptic state in resting cells. Activation/translocation of a-SMase to the outer leaflet following the activation of ATP receptor P2X7 leads to hydrolysis of SM and thus relieves the inhibitory effect of SM on TF, leading to TF decryption and the release of TF+ MPs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document