BLyS Regulates Human Myeloma Cell IL-6 Expression.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1412-1412
Author(s):  
Sook Kyung Chang ◽  
Diane F. Jelinek

Abstract Multiple myeloma (MM) is a malignant disease of plasma cells that accumulate in the bone marrow. The survival mechanisms of myeloma cells are still not fully understood. There are several cytokines that are known to support the survival and growth of myeloma cells, such as IL-6, IGF-I, TNF-a, and IL-1β. Recent evidence has also shown that the TNF family member, B lymphocyte stimulator (BLyS), is critical for normal B cell development and homeostasis, as well as for survival of malignant B cells, including MM. However, it should be noted that the precise mechanisms by which BLyS promotes the survival of MM cells remain uncertain. Our group has already reported that MM cell lines and primary myeloma cells can express BLyS and its receptors. Thus, exogenous BLyS augmented the survival of MM cells, including the IL-6 dependent MM cell line, KAS-6/1. To better study the mechanism underlying BLyS-mediated survival of myeloma cells, we sought to establish a KAS-6/1 cell line variant which was solely dependent on exogenous BLyS for growth and survival. We have previously reported that KAS-6/1 cells do not appear to express autocrine IL-6, and therefore are highly dependent on exogenous IL-6 for survival. To establish a BLyS-dependent KAS-6/1 variant, cells were cultured long-term in RPMI containing 0.5% BSA or 1% FCS in the absence of exogenous IL-6, and in the presence or absence of exogenous BLyS. KAS-6/1 cells cultured in the absence of cytokines were non-viable after two weeks of culture, whereas KAS-6/1 cells cultured with BLyS alone remained viable and proliferated, albeit at a lower rate than parental KAS-6/1 cells maintained with IL-6. We next focused on identifying the mechanisms of BLyS-dependent survival of the KAS-6/1/BLyS (KAS-6/B) variant cell line. Of interest, KAS-6/B cells placed in short term culture exhibited cytokine independent survival and proliferation and this was completely inhibited using a neutralizing IL-6 antibody. These results therefore suggested that the mechanism underlying BLyS-mediated survival and proliferation of the KAS-6/B cells is induction of an autocrine IL-6 pathway. This notion is further supported by the ability of BLyS to induce IL-6 expression at the transcriptional level, and at the protein level as revealed by an IL-6 specific ELISA. Consistent with the concept that BLyS induced autocrine IL-6 expression in the KAS-6/B cells, we also observed that STAT-3 was constitutively activated in these cells. In addition, we tested the ability of BLyS-conditioned media obtained from KAS-6/B cells to stimulate the proliferation of a different IL-6 dependent MM cell line, JMW. Whereas BLyS alone failed to stimulate JMW cell proliferation, BLyS-conditioned media obtained from the KAS-6/B cells stimulated proliferation, and in a manner that was inhibited by a neutralizing IL-6 antibody. Finally, BLyS stimulation of primary patient MM cells similarly resulted in increased IL-6 expression. IL-6 is known to play a major role in the malignant progression of MM by regulating the growth and survival of tumor cells. IL-6 levels often increase during disease progression, and it has been demonstrated that IL-6 may derive from the tumor cells themselves or from other cell types in the bone marrow. Because of this, it is important to fully understand what signals are capable of inducing IL-6 expression in this disease. In summary, our results demonstrate for the first time the ability of BLyS to maintain myeloma cell survival via the induction of an autocrine IL-6 pathway. Our results underscore the importance of IL-6 in this disease, and further demonstrate the complexity of the deregulated cytokine network in this disease.

Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3721-3729 ◽  
Author(s):  
N Huang ◽  
MM Kawano ◽  
H Harada ◽  
Y Harada ◽  
A Sakai ◽  
...  

Abstract Recent immunophenotypic analysis has shown that the heterogeneous expression of the adhesion molecule VLA-5 classifies myeloma cells into VLA-5+ mature and VLA-5- immature subpopulations. To further clarify the two myeloma subpopulations, we generated a monoclonal antibody, MPC- 1, by immunizing mice with an adherent human myeloma cell line, KMS-5. The MPC-1 antibody recognized a 48-Kd surface antigen on KMS-5 but not on U-266, a nonadherent human myeloma cell line. Specificity characterization showed that MPC-1 antigen was expressed on mature myeloma cells, normal plasma cells, and mature B cells, whereas pre-B cells and germinal center B cells lacked its expression. Monocytes and a human bone marrow stromal cell line, KM102, also expressed this antigen. Two subclones of MPC-1+ VLA-5+ (KMS-5Ad) and MPC-1-VLA-5+ (KMS- 5NAd) were separated from the KMS-5 cell line. The KMS-5NAd adhered to KM102 more tightly than did the KMS-5NAd, and the U-266 (MPC-1-VLA-5-) displayed almost no adherence to the KM102. The adhesion of the KMS-5Ad was partially inhibited by the MPC-1 antibody. These results, taken together, suggest that the MPC-1 antigen serves as a differentiation marker for B-lineage cells, including plasma cells, and may function as an adhesion molecule involved in the interaction of mature myeloma cells with bone marrow stromal cells.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3721-3729 ◽  
Author(s):  
N Huang ◽  
MM Kawano ◽  
H Harada ◽  
Y Harada ◽  
A Sakai ◽  
...  

Recent immunophenotypic analysis has shown that the heterogeneous expression of the adhesion molecule VLA-5 classifies myeloma cells into VLA-5+ mature and VLA-5- immature subpopulations. To further clarify the two myeloma subpopulations, we generated a monoclonal antibody, MPC- 1, by immunizing mice with an adherent human myeloma cell line, KMS-5. The MPC-1 antibody recognized a 48-Kd surface antigen on KMS-5 but not on U-266, a nonadherent human myeloma cell line. Specificity characterization showed that MPC-1 antigen was expressed on mature myeloma cells, normal plasma cells, and mature B cells, whereas pre-B cells and germinal center B cells lacked its expression. Monocytes and a human bone marrow stromal cell line, KM102, also expressed this antigen. Two subclones of MPC-1+ VLA-5+ (KMS-5Ad) and MPC-1-VLA-5+ (KMS- 5NAd) were separated from the KMS-5 cell line. The KMS-5NAd adhered to KM102 more tightly than did the KMS-5NAd, and the U-266 (MPC-1-VLA-5-) displayed almost no adherence to the KM102. The adhesion of the KMS-5Ad was partially inhibited by the MPC-1 antibody. These results, taken together, suggest that the MPC-1 antigen serves as a differentiation marker for B-lineage cells, including plasma cells, and may function as an adhesion molecule involved in the interaction of mature myeloma cells with bone marrow stromal cells.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3375-3383 ◽  
Author(s):  
T Tsujimoto ◽  
IA Lisukov ◽  
N Huang ◽  
MS Mahmoud ◽  
MM Kawano

By using two-color phenotypic analysis with fluorescein isothiocyanate- anti-CD38 and phycoerythrin-anti-CD19 antibodies, we found that pre-B cells (CD38+CD19+) signifcantly decreased depending on the number of plasma cells (CD38++CD19+) in the bone marrow (BM) in the cases with BM plasmacytosis, such as myelomas and even polyclonal gammopathy. To clarify how plasma cells suppress survival of pre-B cells, we examined the effect of plasma cells on the survival of pre-B cells with or without BM-derived stromal cells in vitro. Pre-B cells alone rapidly entered apoptosis, but interleukin-7 (IL-7), a BM stromal cell line (KM- 102), or culture supernatants of KM-102 cells could support pre-B cell survival. On the other hand, inhibitory factors such as transforming growth factor-beta1 (TGF-beta1) and macrophage inflammatory protein- 1beta (MIP-1beta) could suppress survival of pre-B cells even in the presence of IL-7. Plasma cells alone could not suppress survival of pre- B cells in the presence of IL-7, but coculture of plasma cells with KM- 102 cells or primary BM stromal cells induced apoptosis of pre-B cells. Supernatants of coculture with KM-102 and myeloma cell lines (KMS-5) also could suppress survival of pre-B cells. Furthermore, we examined the expression of IL-7, TGF-beta1, and MIP-1beta mRNA in KM-102 cells and primary stromal cells cocultured with myeloma cell lines (KMS-5). In these cells, IL-7 mRNA was downregulated, but the expression of TGF- beta1 and MIP-1beta mRNA was augmented. Therefore, these results suggest that BM-derived stromal cells attached to plasma (myeloma) cells were modulated to secrete lesser levels of supporting factor (IL- 7) and higher levels of inhibitory factors (TGF-beta1 and MIP-1beta) for pre-B cell survival, which could explain why the increased number of plasma (myeloma) cells induced suppression of pre-B cells in the BM. This phenomenon may represent a feedback loop between pre-B cells and plasma cells via BM stromal cells in the BM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3444-3444
Author(s):  
Magne Rekvig ◽  
Anne-Tove Brenne ◽  
Torstein Baade Ro ◽  
Anders Waage ◽  
Magne Borset ◽  
...  

Abstract Multiple myeloma has two distinct features: Expansion of malignant plasma cells within the bone marrow accompanied by skeletal destruction. Bone morphogenetic proteins (BMPs) have been shown to induce apoptosis and inhibit growth in myeloma cells. BMPs are members of the TGF-β superfamily of proteins capable of inducing bone formation, and regulate proliferation, differentiation and apoptosis. We have investigated myeloma cell apoptosis and proliferation with BMP-4 and −6 in concert with the myeloma cell growth factors interleukin (IL)-2, IL-6, IL-10, IL-15, IL-21, tumor necrosis factor (TNF)-α and insulin-like growth factor (IGF)-1. Eight samples of highly purified myeloma cells from patients and a human myeloma cell line, IH-1 (Brenne AT et al. Blood. 2002 May 15;99(10):3756–62.), were used in this study. Cytokine concentrations used in the referred experiments were for BMP-4 20ng/ml, BMP-6 250ng/ml, IL-15 20ng/ml and IL-6 0,1ng/ml, respectively. Growth inhibition was measured in a proliferation assay by methyl-[3H]-thymidine incorporation and apoptosis by annexin V- FITC-binding/PI-uptake on flow cytometry. IL-15 antagonized growth inhibition (Figure A) and prevented apoptosis induced by BMP-4 (Figure B) and BMP-6 in the myeloma cell line IH-1. IL-15 also antagonized the growth inhibition induced by BMP-4 and/or BMP-6 in three out of eight patient samples. Neither IL-6, nor any of the other investigated cytokines were able to rescue the myeloma cells from growth inhibition and apoptosis induced by BMP-4 and -6. Among the investigated cytokines, we found that IL-15 has a unique capability to antagonize BMP- induced apoptosis and growth inhibition in myeloma cells. We examined cleavage of the proapoptotic protein caspase-3 and found that BMP-4 activated caspase-3 in the IH-1 cell line. This activation of caspase-3 was blocked by IL-15 but not by IL-6. We have demonstrated a possible mechanism for myeloma cells to escape apoptosis and growth-inhibition within the bone marrow. Intramedullar levels of IL-15 and BMPs may play a role in the pathogenesis of multiple myeloma. Figure A. Proliferation in response to BMP-4 stimulus Figure A. Proliferation in response to BMP-4 stimulus Figure B. Apoptosis in response to BMP-4 stimulus Figure B. Apoptosis in response to BMP-4 stimulus


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1814-1814
Author(s):  
Donata Verdelli ◽  
Lucia Nobili ◽  
Katia Todoerti ◽  
Laura Mosca ◽  
Sonia Fabris ◽  
...  

Abstract Abstract 1814 Poster Board I-840 Background The growth and survival of multiple myeloma (MM) cells in the bone marrow microenvironment is regulated by functional complex interactions between the tumor cells and the surrounding bone marrow stromal cells mediated by adhesion molecules and the production of several cytokines of which interleukin-6 (IL-6) has been identified as the most important. Major advances in the investigation of MM biology were made possible by the availability of human myeloma cell lines (HMCLs). The IL-6-dependent CMA-03 cell line was established in our laboratory from a peritoneal effusion of a refractory relapsed MM patient. By gradually decreasing the IL-6 added to the culture, an IL-6-independent variant, CMA-03/06, could be obtained. Aims. To perform a biological and molecular characterization of this novel cell line, and to provide insights into the signaling pathways and target genes involved in the growth and survival of CMA-03/06. Methods. The growth, immunophenotypic, cytogenetic and fluorescence in situ hybridization (FISH) characterization of CMA-03/06 cell line was performed by means of standard procedures. IL-6 production into the culture media was determined using a high sensitivity IL-6 specific ELISA. Genome-wide profiling data were generated by means of Affymetrix GeneChip® Human Mapping 250K Nsp arrays; copy number (CN) alterations were calculated using the DNAcopy Bioconductor package, based on circular binary segmentation method. Global gene expression profiling (GEP) was performed by means of the GeneChip® Human Gene 1.0 ST Arrays (Affymetrix); the supervised analyses were done using the SAM software version 3.0. Results Unlike CMA-03, the addition of IL-6 to the culture medium of CMA-03/06 cells or co-culture with multipotent mesenchymal stromal cells did not induce an increase in CMA-03/06 proliferation. IL-6 was not detected in the supernatants from either CMA-03 or CMA-03/06 cell lines within 48 h, suggesting that the IL-6 independence of CMA03/06 cells is not a result of the development of an autocrine IL-6 loop. Nevertheless, IL-6 induced the activation of STAT3 and STAT1 in both cell lines, even if a slight constitutive STAT3 phosphorylation was found in CMA-03/06. The immunophenotypic analysis showed a significant difference in the expression of three antigens in the 2 cell lines: CD45 was considerably reduced in CMA-03/06 cells, whereas they were found positive for both chains of IL-6 receptor, CD126 and CD130, almost undetectable in CMA-03. Conventional cytogenetic and FISH analyses did not reveal differences between the 2 HMCLs. The genome-wide analysis allowed the identification of about 100 altered chromosomal regions common to both HMCLs, mostly DNA gains. Comparison of CMA-03/06 and CMA-03 cells evidenced a different CN in only 15 small chromosomal regions, 8 of which did not contain any transcript, whereas few genes were located on the other ones. GEP analysis of CMA-03/06 compared with CMA-03 identified 21 upregulated and 47 downregulated genes, many of which particularly relevant for MM biology, mainly involved in cellular signaling, cell cycle, cell adhesion, cell development, regulation of transcription, immunologic, inflammatory or defense activity, apoptosis. None of the genes differentially expressed in CMA-03/06 compared with CMA-03 except 1 were positioned on the chromosomal regions showing a different CN. Finally, CMA-03/06 cell line showed a lower susceptibility to camptothecin-induced apoptosis compared to CMA-03 cells. Conclusions Our data show the IL-6 independence of CMA-03/06 cell line in the absence of an autocrine IL-6 loop; the cells, however, maintain the IL-6 signaling pathway responsiveness. A consistent number of genes particularly relevant for MM biology were found deregulated in CMA-03/06 cell line compared with CMA-03. Furthermore, CMA-03/06 cell line shows an increased resistance to apoptosis. The novel CMA03/06 cell line may thus represent a suitable model for studies investigating molecular mechanisms involved in clonal evolution towards IL-6 and/or stroma-independent growth and survival of myeloma cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2946-2946
Author(s):  
Catherine M Gavile ◽  
Jayakumar R Nair ◽  
Kelvin P Lee ◽  
Sagar Lonial ◽  
Lawrence H. Boise

Abstract Abstract 2946 Multiple myeloma (MM) is a hematologic malignancy characterized by the aberrant proliferation of plasma cells. Myeloma cells retain most of the physiological characteristics of their normal counterpart – the long-lived plasma cell. Myeloma cells secrete immunoglobulin and reside in the bone marrow, where they rely heavily on interactions with the stroma for survival signals. While recent advances in therapeutics have led to an increase in median survival post-diagnosis, the disease remains incurable. Understanding the pathways which mediate growth and survival of these cells will help in identifying new targets that can potentially further improve patient outcomes. CD28 is a receptor better known for its role in T-cell signaling through interaction with its ligands, CD80 or CD86. Interaction between CD28 on T-cells and CD80/86 on antigen-presenting cells leads to survival and proliferation of T-cells. Recent work has shown that the CD80/86-CD28 pathway also plays an important role in normal plasma cell generation and survival. Interestingly, high expression of CD28 and CD86 are poor prognostic markers for myeloma patients. Previous work has shown that CD28 activation provides survival signals for myeloma cells in growth-factor deficient conditions. It has also been shown that CD28 on the myeloma cell interacts with CD80/86 on the dendritic cell, which induces secretion of IL-6 (by the DC), an important myeloma growth factor. However, it is not known if CD28 or CD86 play a role in steady state growth and survival of myeloma cells. In order to determine the role of each of these 2 molecules in myeloma physiology, we knocked-down either CD28 or CD86 on the myeloma cell via lentivirus-mediated shRNAs. We found that knockdown of CD86 leads to apoptosis in 3 myeloma cell lines (RPMI8226, MM1.s, and KMS18). Four days after infection with the lentivirus containing shCD86, 45.7±4.9 and 60.3±4.6 percent control apoptosis was observed in RPMI8226 and MM1.s respectively, while less death was observed in KMS18 (17.6±1.6). CD28-knockdown resulted in apoptosis as well (24.9±4.3 for RPMI8226, 26.8±4.1 for MM1s, 21.8±3.8 for KMS18, percent control apoptosis). Consistent with these findings, we were unable to establish a myeloma cell line with stable knockdown of either CD28 or CD86. Additionally, RPMI8226 cells stably transfected to over-express either Bcl-2, Bcl-xL, or Mcl-1 are protected from cell death induced by CD86 or CD28 silencing. These data suggest that CD28 and CD86 are essential to prevent apoptosis of myeloma cells in vitro. To confirm these findings we determined the effects of CTLA4-Ig on myeloma survival. CTLA4-Ig inhibits CD86-CD28 signaling by binding to CD86, blocking its interaction with CD28. We found that treatment of RPMI8226 and MM1.s cells with CTLA4-Ig caused apoptosis in the myeloma cells after 2 days (23.9±3.9 for RPMI8226 and 20.4±6.2 for MM1.s, percent control apoptosis). Thus like normal plasma cells, CD28 and CD86 are required for the survival of myeloma cells. To determine why silencing of CD86 has a more potent effect than CD28 silencing on myeloma cell survival in 2 out of 3 cell lines, we investigated the effects of silencing on cell surface expression of each of these proteins. CD28 and CD86 mRNA and protein levels were silenced to similar levels by their cognate hairpins. However, in MM.1s and RPMI8226 we found that silencing of CD28 resulted in an increase in CD86 surface expression. This increase was also observed at the mRNA level and in the cells over-expressing Bcl-2 family members, indicating that this is not simply due to the selection of the highest expressing cells. These data suggest a feedback loop exists to regulate CD28-CD86 signaling in myeloma cells. Surprisingly, in the KMS18 cell line, we observe the converse effect, where silencing of CD86 resulted in upregulation of CD28. This provides a likely explanation for why these cells are less susceptible to CD86 silencing than the other two lines. Interestingly, blocking CD86 with CTLA4-Ig treatment also resulted in a modest upregulation in CD28 surface expression of MM.1s and RPMI8226, which suggests that silencing CD86 and binding of CD86 with a soluble receptor are not equivalent, and that multiple signaling feedback pathways exist to regulate the expression of this receptor-ligand pair that is necessary for myeloma cell survival. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 8039-8039 ◽  
Author(s):  
Konstantinos Lontos ◽  
Juraj Adamik ◽  
Peng Zhang ◽  
Quanhong Sun ◽  
David Roodman ◽  
...  

8039 Background: Myeloma bone disease is characterized by osteoclast activation and long-term osteoblast suppression. We investigated if Semaphorin 4D (Sema4D; CD100) plays a role in these processes. Sema4D has been shown to be a potent osteoblast inhibitor (Negishi-Koga T et al, Nat Med. 2011). A study recently identified that the breast cancer cell line MDA-MB-231 utilizes Sema4D to create osteolysis (Yang Y et al, PLOS One 2016). There have been previous data that Sema4D is increased in the serum of myeloma patients (Terpos et al, Blood 2012) and that co-culturing myeloma cell lines with osteocytes increases the expression of Sema4D mRNA in both (Suvannasankha et al, Blood 2016). We sought to investigate if myeloma cells are using Sema4D to suppress bone formation and if they affect the levels of Sema4D produced by osteoclasts. Methods: We used lentivirus carrying shRNA for Sema4D or control (Scr) to knock down the level of the protein in the 5TGM1 murine myeloma cell line. Knockdown was verified by qPCR and Western Blot. We subsequently co-cultured the 5TGM1 cells with the MC3T3-subclone M4 (MC4) murine stromal cell line for 2 days, removed the myeloma cells and then differentiated the MC4 cells using ascorbic acid and β-glycerolphosphate. At day 5, we analyzed the cells for Runx2 (a critical gene for the differentiation of stromal cells into osteoblasts) expression utilizing qPCR. Also, we performed qPCR in primary osteoclast (OCL) mouse cells differentiating into OCL with RANKL with or without pre-treatment with myeloma-conditioned media for 3 days before the addition of RANKL. Results: When 5TGM1-Scr were co-cultured with MC4 cells the expression of Runx2 on day 5 was decreased (p=0.02). Strikingly, the 5TGM1-shSema4D cells when co-cultured with MC4s did not have the same effect and allowed the upregulation of Runx2 expression on day 5 (p=0.01). Myeloma-conditioned media increased Sema4D expression by OCL throughout the 5 days of differentiation 2 to 3-fold (p=0.01 for day 5). Conclusions: The myeloma cells seem to be utilizing Sema4D both directly and indirectly to inhibit bone formation. Targeted therapy against Sema4D may improve outcomes and fracture-free survival for multiple myeloma patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4793-4793
Author(s):  
Håkon Hov ◽  
Erming Tian ◽  
Anders Waage ◽  
Magne Børset ◽  
Anders Sundan

Abstract Multiple myeloma is an incurable malignancy of plasma cells homing to the bone marrow. Myeloma cells are dependent on factors in their microenvironment for survival and expansion. HGF may be produced both by myeloma cells and the bone marrow microenvironment and serum levels of HGF are known to be a prognostic factor in multiple myeloma. Both IL-6 and IGF-1 are known growth factors for myeloma cells. In the human myeloma cell line (HMCL) INA-6, HGF alone had low effect, but together with IL-6 and IGF-1 it became a potent growth factor increasing thymidin incorporation two- to three-fold above the levels obtained with IL-6 or IGF-1 alone. Similar results were obtained for the myeloma cell line OH-2. The ANBL-6 cell line harbours an autocrine growth promoting HGF-loop. When inhibiting this autocrine HGF loop with a specific c-Met receptor tyrosine kinase inhibitor (PHA-665752), IL-6- and IGF-1-induced proliferation was reduced by 80% and 50% respectively. Thus, in the prescence of HGF, both IL-6 and IGF-1 are dependent on the HGF-receptor c-Met for full effect on cell proliferation. There seems to be two interconnected explanations for the synergy between HGF- and either IL-6- or IGF-1-signalling in myeloma cells. IL-6 and IGF-1 treatment increased the expression of c-Met in INA-6 cells Secondly, we found that HGF was unique among the three growth factors in activating both Ras and p44/42 MAPK in INA-6 cells. Also in ANBL-6 cells, IGF and IL-6 was dependent on functional c-Met signalling to fully activate this pathway. Thus, the reason for synergy between HGF and IL-6 or IGF-1 seemed to be that full activation of the Ras-Mapk pathway through Gab1 and SHP-2 by these cytokines was dependent on operating c-Met signalling. Taken together, HGF and c-Met signalling would be attractive targets for therapy of multiple myeloma.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 767-774 ◽  
Author(s):  
RC Ridley ◽  
H Xiao ◽  
H Hata ◽  
J Woodliff ◽  
J Epstein ◽  
...  

The syndecans comprise a family of integral membrane proteoglycans that regulate cell behaviors by binding to extracellular matrix and binding growth factors. In mouse blood cells, syndecan expression is restricted to cells of the B-cell lineage where it is expressed by pre-B cells and plasma cells, but is absent from circulating B cells. In the present study, we examined the expression, structure, and function of syndecan on human myeloma cell lines and myeloma patient bone marrow cells. On myeloma cells, syndecan is a small (modal relative molecular mass [M(r)] = 120 Kd) heparan sulfate proteoglycan localized at the cell surface. Syndecan was detected by immunodot blotting on 7 of 10 human myeloma cell lines and by reverse transcriptase polymerase chain reaction on 10 of 14 patient samples. Cell binding assays show that myeloma cells expressing syndecan bind to type I collagen via heparan sulfate chains, while those cell lines not expressing syndecan do not bind to collagen. Furthermore, the cell lines expressing syndecan were negative for CD19 and CD45 staining, indicating that syndecan expression is restricted to tumors having a well-differentiated phenotype. We conclude that syndecan acts as a matrix receptor on human myeloma cells but is not expressed by all tumors, suggesting that syndecan may participate in regulating myeloma cell adhesion to the bone marrow stromal matrix.


Sign in / Sign up

Export Citation Format

Share Document